Data Structures Lecture 16 Name:

2. All simple sorts consist of two nested loops where:
* the outer loop keeps track of the dividing line between the sorted and unsorted part with the sorted part growing
by one in size each iteration of the outer loop.
* the inner Ioop's job is to do the work to extend the sorted part's size by one.

Initially, the sorted part is typically empty. The simple sorts differ in how their inner loops perform their job.
Selection sort is an example of a simple sort, Selection sott’s inner loop scans the unsorted part of the list to find the

maximum item. The maximum item in the unsorted part is then exchanged with the last unsorted item to extend the
sorted part by one item,

At the start of the first iteration of the outer loop, initial list is completely unsorted:

Unsorted Part Empty Forted Part
.. {t ty
0 1 2 3 4 5 6 17 8 /
myList: | 25 35120| 40| 90| 60|10 50} 45

The inner loop scans the unsorted part and determines that the index of the maximum item, maxIndex = 4.

Sorted Part

0123456’?8l
myList: | 251352014090 60| 10| 50} 45

Unsorted Part

maxIndex = 4 lastUnsortedIndex = 8

After the inner loop (but still inside the outer loop), the item at maxIndex is exchanged with the item
at lastUnsortedIndex. Thus, extending the Sorted Part of the list by one item.

Unsorted Part Sorted Part

0 1 2 3 4 5 6 7 8
myList: | 25| 35|20 40| 45/ 60| 10| 50 | 90
2 ,

T e e

e

maxIndex =4 lastUnsortedIndex = 8

a) Write the code for the outer loop

for lastUngo 4 ef Tdles i wﬁnqe(!@‘(""}/iﬁ”})“{) O) ’)%

b) Write the code for the inner loop to scan the unsorted part of the list to determine the index of the maximum item
maxTaloy = ()

0 “‘f*tzg‘f{*jmgm (A N“’?@@C{, léﬁgﬂgwfjﬁﬁé"f\’ “"“{; l Bf

R LI FectTofee 1 > m Lest Tkl y iy
MAXT Lot :ziifégm“m@’ﬁf 4 ‘ j

c) Write the code to exchange the list items at positions maxIndex and lastUnsortedIndex.

"H(ﬂ ﬁ” = my L F S"{: C/{:V‘rqx;:l}liﬂg N W y/.-r“"‘.'-;‘“ﬂ)r, ‘_l\)
n yLZ;;: L maxlady) = payelays [T 1t Aelaty] (O
" 3 . A / N e B
d) What is the/l?i -oh Il(dqu{ti%nlg[i}%(:tfiogg sjﬁ-{j "?ztg}fﬁj a W{M{?A//d (V\ -1 .ff:.\m “

#Heompnes = (n-1) ¢ (a-2]4 Qrg’)-{» T +7tf 4,/ M e 16Fage2

el = (T AT T

Data Structures Lecture 16 Name:

3. Bubble sort is another example of a simple sort. Bubble sort’s inner loop scans the unsorted part of the list
comparing adjacent items, If it finds adjacent items out of order, then it exchanges them. This causes the largest
item to “bubble” up to the “top” of the unsorted part of the list.

At the start of the first iteration of the outer loop, initial list is completely unsorted:

Unsorted Part Emplty Sorted Part

0 1 2 3 4 S5 6 7 8
myList: | 25[35]20/40| 90} 60| 10} 50| 45

The inner loop scans the unsorted patt by comparing adjacent items and exchanging them if out of order.

Sorted Part Worcs,,
______ Unsorted Part 7] Beammnep Aotoror
0 1 2 3 4 5 6 7 IastUnsortedIndex 8 ol
myList: [25] 35] 20]40] 90] 60 [10] 50 45{ A (‘m() (a1
A A .
in order, so don't exchange
A4 4 ()
out of order, so exchange
¢ 1 2 3 4 5 6 7 8§
myList: | 25] 20 35]40] 90] 60] 10] 50] 45 (a-%)
Ak

.........

in order, so don't exchange
A A
in order, so don't exchange
A A

out of order, so exchange \
0 | 2 3 4 5 6 1 8
mylList: | 25]20]35]40]60]90]10]50]45
7 N

out of order, so exchange

0 1 2 3 4 5 6 7 8
2
(

myList: {25120} 35[40[60] 10 90 50| 45
y §
out of orderué_c; exchange
0 1 2 3 4 5 6. T\ 8 AP
mylList: | 25120 35|40 60110} 50 9;04‘5 A (’t _ l\
out of order, so exchange __oorecwimnoe,
0 1 2 3 4 5 6 7 8 ‘L

myList: | 25120 35/40]60]10|50]45]|90

. S _ H a0
After the inner loop (but still inside the outer loop), there is nothing to do since the exchanges DA ere s ¢4
occurred inside the inner loop, g as¢

a) What would be the worst-case big-oh of bubble sort? 0(#) g >

b) What would be true if we scanned the unsorted part and didn’t need to do any exchanges?

V“S‘Q f‘“(f’(/ },Qﬁf r'! & (W‘?’/(/’ wggf"“ 'fefv?(;}'(QQC,J :';&f “’}/f"} éjﬁ‘?{t //"/ Lecture 16 Page 3

J G"(j \éwgg{e g,gr*}‘(Ay faff"f'))

Ugm)ﬁj}%uﬁmffg{t[’@éé;([‘r\%ﬁﬂﬁé(’éﬂ (m[/i/‘iy')””)) O/ “',) ::

LY

: o, o
lﬁcﬁi&z{‘fas ?’ ,w‘/jﬁf I'n ;e/:d%ﬂc)‘ ¢ (9,) lagtUngortel rk f |)(§
o myLete et ndey 1 > mylisy Eés#;l%féwﬁf
Ten0 e myLrgt [otestTade,']
myl ¢ Ff&‘vsﬂm& g:j IV Loert I, vy Q
M }KL{W L tepft };!Zef;g t{ = tea f
a ’ 4 ﬁé?@{z?‘&f{:’%*{ = g / Se

H / V"(?wf;z},f% ~ {%@’%

s‘ retuon

Data Structures Lecture 16 Name:

4, Another simple sort is called insertion sort. Recall that in a simple sort:
* the outer loop keeps track of the dividing line between the sorted and unsorted patt with the sorted part growing
by one in size each iteration of the outer loop.
+ the inner loop's job is to do the work to extend the sorted part's size by one,

After several iterations of insertion sort’s outer loop, a list might look like:

llllllllllllllllll S OItGdPalt](UnsmtedPart
0 1 2 3 4 5 6 17T 8
10 40 i"’45 %60‘1?2521 50[90| o o o

§] etert Ty Tagy
In insertion sort the 1nne1-loop takes the "first unsotted item” (25 at index 6 in the above example) and "inserts" it
into the sorted part of the list "at the correct spot." After 25 is inserted into the sorted part, the list would look like:

Sorted Part Unsorted Part

0 1 2 3 4 5 6 7 8
10 120]25(35|40{45|60| 5%| 90| o e o

R e a4

Code for insertion is given below:

def insertionSort (myList):

v tRearranges the items in myList so they are in ascigd n? order"“" (qnﬁj
for firstUnsortedIndex in range(l, 1en(myLlst)) (J u‘ﬁ§u fﬂﬁ
itemToInsert = myList [firstUnsortedIndex] §ﬁpﬁ_ :

testIndex = firstUnsortedIndex - 1 { ,ﬁgmhi
while testIndex »= 0 and myList[testIndex] > 1temToInsert
myLlst[testIndex+1} = myList [testIndex]
testindex = testIndex - 1

Insert the itemToInsert at the correct spot
myLigt [testIndex + 1] = itemToInsert

a) What is the purpose of ‘he testindex »>= 0 while-loop comparison?

b) What in}ai arrangement of items causes the is the overall worst-case performance of insertion sort?
i (. A}
2 5¢.00d 0 g @&(Z@m rardi /y

¢) What is the worst-case O () notation for the number of item moves?

O 7)

d) What is the worst-case O () notation for the numkber of item comparisons? (D(:M?fl)

¢) What initial arrangement of items causes the is the overall pest-case performance of insertion sort?

(/J) k..(}"’ (?';\ ” /"’/ ;l‘;) S (';"'? 3 “(‘ﬁ "
r . r : T ey
¢ o ? ~

f) What is the best-case O() notation for insertion sort?
. . % Qnﬂ@
- A) ‘ Lecture 16 Page 4

Data Structures Lecture 17 Name:

1. So far, we have looked at simple sorts consisting of nested loops. The # of inner loop iterations n*(n-1)/2 is O(n?).
Consider using a min-heap to sort a list. (methods: BinHeap (), insert(item), delMin(), isEmpty(), size())

a) If we insert all of the list elements into a min—héap, what would we easily be able to determine?

L] : . i X R R
General idea of Heap sort; myList unsorted list with n items
1 Cleate an empty he

ane {va bep = (330 Ho g ()

11 n list items info hea

O(f*)%r [dem o Ztﬁ"g (]
y@ ,é’q/;?, MS’W?’“ i ’ﬁf’?) 4 2y

3, deMin heap items back to list in softe ortedsider
e ~lie i ’ém{ /A g\éﬁﬂ?é fea GhyL' ﬁf}r) List sorted list with n items

myListlinder (= m y/“/fﬁiﬁ eﬂe WV\ Hﬁfe)

b) What is the ovelall o) {fm heap so;t?

~heapd wzth
n 1te¥ns <

2. Another way to clo bett gg?nlfhe simple sorts is to employ divide-and-conquer (e.g., Merge sort and Quick Sort).
Recall the idea of Divide-and-Conquer algorithms, Solve a problem by:

* dividing problem into smaller problem(s) of the same kind

* solving the smaller problem(s) recursively

* usc the solution(s) to the smaller problem(s) to solve the original problem

In general, a problem can be solved recursively if it can be broken down 1{1’[0 smaller problems that are identical in
structure to the original problem,

a) What determines the “size” of a sorting problem?

b) How might we break the original problem down into smaller problems that are identical?

¢) What base case(s) (i.e., trival, non-recursive case(s)) might we encounter with recursive sorts?

d) How do you combine the answers to the smaller problems to solve the original sorting problem?

¢) Consider why a recursive sort might be more efficient. Assume that I had a simple n? sotting algorithm with

n = 100, then there is roughly 100?/ 2 or 5,000 amount of work. Suppose I split the problem down into two smaller

sorting problems of size 50.

* IfTrun the n® algorithm on both smaller problems of size 50, then what would be the approximate amount of
work?

* If T further solve the problems of size 50 by splifting each of them into two problems of size 25, then what would
be the approximate amount of work?

Lecture 17 Page 1

