Data Structures Lecture 17 Name:

1. So far, we have looked at simple sorts consisting of nested loops. The # of inner loop iterations n*(n-1)/2 is O(n?),
Consider using a min-heap to sort a list. (methods: BinHeap (), insert {item), delMin{), isEmpty(), size())

a) If we insert all of the list elements into a min-heap, what would we easily be able to determine?

General idea of Heap sort:

myList unsorted list with n items

1 Cleate an empty he

2. InseLF “ig w (j '\.H?ﬁf ()

all n list items infto he

a
oINS Sopu f
My Heq,a Ms‘w! %M) l P “*‘t@ A
3. delMin heap items back to list in s"“i'f”a otder | + L

W =2 ‘\EM“ Mfeﬁ ¥ lr"\ 4 ‘%“?é 'M (’hyl‘ﬂ{ yList l sorted list with n items
nyLestlinder (= my, #/fﬁf;, @ MiaC)

b) What is the overall O() for heap 305t9

A {J% 4
2. Another way to do better th n¥the s mple sorts is to employ divide-and-conquer (e.g., Merge sort and Quick Sott),
S

Recall the idea of Divide-and-Conquer algorithms. Solve a problem by:

* dividing problem into smaller problem(s) of the same kind

* solving the smaller problem(s) recursively

* use the solution(s) to the smaller problem(s) to solve the original problem

In general, a problem can be solved recursively if it can be broken down 1{1to smaller problems that are identical in
structure to the original problem.

a) What determines the “size” of a sorting problem? /?,1 \aﬁ ﬂ':j‘rf <

b) How might we break E‘l&oou inal problem gg\i;n-iﬁtﬁ‘fetﬁaller problems that are identical?

|<;r/ /,? WMM,ME.\

CE%M Y

¢) What base case(s) (i;¢, trival, non-recursive case(s)) might \:tkeounter with recursive sorts?

lff"/ € 5/%(? Od}"f“)

d) How do you combme(he answers to the smaller problems to solve the original sorting problem?

m&/ﬂf ~ See next pﬁy@)

¢) Consider why a recursive sort might be more efficient. Assume that I had a simple n* sorting algorithm with

n = 100, then there is roughly 100%/ 2 or 5,000 amount of work. Suppose I split the problem down into two smaller
sorting problems of size 50.

* If1run the n? algorithm on both smaller problems of size 50, then what would be the approximate amount of

work?) 2 o
...;g“* - :g;rﬂ - 2/ sae2
[1-

* IfT further solve the problems of size 50 by splitting each of them into two problems of size 25, then what would
be the approximate amount of work?

Z
U x 22 = \|259 |
2. Lecture 17 Page 1

Data Structures Lecture 17 Name:

3. The general idea merge sort is as follows. Assume “n” items to sort.

* Split the unsorted patt in half to get two smaller sorting problems of about equal size =n/2

* Solve both smaller problems recursively using merge sort

* “Merge” the solutions to the smaller problems together to solve the original sorting problem of size n

ill § i ; U P
a) Fill in the merged Sorted Part in the diagram. nsorted Part

0)23 4TS 6T
7 leolast 10l 48] 45| 20] 25] 50!\)

(__OM{JW‘Q “{‘?{fﬁ‘lr/fwlﬂ' }‘ILKMJ’ 'P’U'“ 50&!‘@/ Unéc;nedfﬁ%Hatf Unsorted Right Haif
] 01 2 3 o1 2 3
ha ’\'!(frf’"” move 40 M}A {Paﬂf 1 S°’1L"‘ﬂ¢7"l'<>h‘lﬁol35[10!40| [45]20] 25] 50]

b) Describe how you filled in the sorted part in the above example?

Sorted Left Half Sorted Right Half
B | I M 6 1 2 3
p)

SortedBart,

ét? J“?/m .-ﬁi: (oo /

A,

L 0 1. 2 3 4 5'"‘“_63&;7
vest (n-1) o [1013d 181l sl ed

4, Merge sort is substantially faster than the simple sorts, Let’s analyze the number of comparisons and moves of
merge sort. Assume “n” items to sort,

Compares | Unsorted size 1 -] # Moves
& % N
[Unsoredsizenz | | Unsorted sizenf2 | A
o 7 N /N n
i Y i | - Of
. : 'N/ /> [o Ve { g

| Sorted size 1/2 C_;P [Sored size nf2 6;1

A -} - v
0 C;'\ A /cbq”\) { A « Sorled size n N -2_‘” N

#)
a) On each level of the above diagram write the WORST-CASE number of comparisonsﬁf moves for that level.

[A —

b) What is the WORST-CASE total number of comparisons and moves for the whole algorithm (i.c., add all levels)?
. !

¢) What is the big-oh for worst-case? o] £ -
e V507 !‘*"ﬁ%u‘“ @6“\ Z@guh) ‘{ﬁg v

e
e

Lecture 17 Page 2 |

Data Structures Lecture 17 Name: j:g ;ﬁ

5. Quick sort general idea is as follows,) / /A%N_) / ,]
* {/ Select a “random” item in the unsorted patt as the pivor | % PivolIndex

\'bzqn N s
*\{ Rearrange (parfitioning) the unsorted items such that> ¥ A1 jtems < to Pivot ?gg?’oil All 1tems >=1to Pwo’ff
* "Quick sort the unsorted part to the left of the pivot \\ - Ig\ v R /,,,]
* Quick sort the unsorted part to the right of the pivot e T v \I\ _(/ e
a) Given the following partition function which returns the index of the pivot after this 1'earrangement, complete
the recursive quicksortHelper function. def quicksort{lyst):
def partition(lyst, left, right}: quicksortHelper{lyst, 0, len{lyst} - lg);},r
Find the pivot and exchange it with the last item
middle = {left + right) // 2 def u) ﬁﬁortﬂelpegﬁigst left, right): l @{
pivot = lyat {niddle} {E 2 [5 n{ ‘ { &
lyst [middle] = lyst[right] 1716 (
lyst [right}] = pivot Egl {?‘@)’ Akd < Igﬁf @ \}"‘l evd ‘f")éfy

Set boundary point to first position
boundary = left %!r!féod}{éfﬁﬁ{h y[?% 4.4
/ , f y5Y,) wa 18
Move items less than pivot to the left
for index in range{left, right):
if lyst[index] < pivot: iﬁi({,{fﬁsﬂié’;@ é?{%({}ay\‘f p/w?l;ﬁfr}f PI{V)
temp = lyst[index]
lyst [index] = lyst [boundary]
lyst [boundary] = temp
boundary += 1
Exchange the pivot item and the boundary item
tenp = lyst [pgundary]
lykt [boundqry] = lyst[right]
lyst[right] = temp :
return boundary

“
b) For ﬂ;e list elowairac thg%l st call,to gmtzon and dete ?e the resulting list, and value returned.
] ;{7 g left right index boundary pivot

lyst.§f4’69')z”ff§f}4"55;d ol [s] [Z] [|3

i P

b) What initial arrangement of the list would cause pamtion to perform the most amount of work?

Mzzgﬂ'?h z"r[ewi (r A,ﬁ@%

¢) Let “n” be the number of items between left and right. What is the worst-case O() for partition?

O(h)

Lecture 17 Page 3

Data Structures Lecture 17 Name:

d) What would be the overall, worst-case O) for Quick Sort?

S - T

S A1t
N3
; /tl y :CVH' /) ‘k:].,.
R _) 7+
\: lmm./ 5 M’/ - (&'1’»5 g).,f, (m4))+ o

L\\“ﬂ i T e e T

lf«} [.. Pl

e) Ideally, the pivot item spl’ipfhe list into two equal size problems. What would be the big-oh for Quick gort in the
S S — S
b L%) [o)
-) o5 4

f) What would be the big-oh for Quick Sort in the average case? d A
, o, fy el

Oln }‘7% ’??)

SN V¥ ﬂ:wq
“ "f'—ﬂ

g) The textbook’s partition code (Listing 5.15 on page 225) selects the first item in the list as the pivot item.
However, the above partition code selects the middle item of the list to be the pivot. What advantage does

selecting the middle item as the pivot have over selecting the first item as the pivot?
T}/\Q 4-&)')90:)[((o ﬁc W;/ ! 9 e Worst Case pe r‘%fﬁ%’l&’i(cf on A /V'(?'f Y §<>f‘7(¢/

. r p Ny ,
'lf‘!\ W5, }?ef’f (45 p()r Pd.r#f'{”ﬁﬂ Qnoie Lecture 17 Page 4

Data Structures @ @ @ Lecture 18 Name:
1. Consider the parse tree for (9 + (5 * 3)) /(8 - 4):

whi-

a) Inde /che followmg items in the above tree:
HO e containing “*” ¢ siblings of the node containing “*”62
¢ edge from node containing “-” to node containing “8” leaf nodes of the tree 9,5

\' root node subfree who’s root is node contains “+”
- 8. children of the node containing “+” & K * path from node containing “+” to node containing “5”
* parent of the node containing “3” 3 * branch from root node to “3” ¥ i ¥

b) Mark the levels of the tree (level is the number of edges on the path from the root)
¢) What is the height (max. level) of the tree?
2. In Python an easy way to implement a tree is as a list of lists where a tree look like:
[“node value”, remaining items are subtrees for the node each implemented as a list of lists]
Complete the list-of-lists representation look like for the above parse free:
C7, LI 11

3. Consider a “linked” representations of a BinaryTree. For the expression ((4 + 5) * 7), the binary tree would be:

class BinaryTree: e —

def _ init_ (self,rootObi}: 7 key | e
self.kxey = rcotObj
gelf,leftChild = None { leftChild rightChild !
self.rightChild = None)
o =
key | '+ ~., T e key { '7°?
{ leftchild rightchild } { leftChild rightchild }
A/ = \\
key| "4 N key | 15¢
{ leftChild rightChilg | leftchild rightChild

Lecture 18 Page |

