1. Consider the parse tree for \((9 + (5 * 3)) / (8 - 4)\):

![Parse Tree Image]

a) Identify the following items in the above tree:
 - node containing “*”
 - edge from node containing “-” to node containing “8”
 - root node
 - children of the node containing “+”
 - parent of the node containing “3”
 - siblings of the node containing “*”
 - leaf nodes of the tree
 - subtree who’s root is node contains “+”
 - path from node containing “+” to node containing “5”
 - branch from root node to “3”

b) Mark the levels of the tree (level is the number of edges on the path from the root)

c) What is the height (max. level) of the tree?

2. In Python an easy way to implement a tree is as a list of lists where a tree look like:

   ```python
   ["node value", remaining items are subtrees for the node each implemented as a list of lists]
   ```

 Complete the list-of-lists representation look like for the above parse tree:

   ```python
   ['/', ['+', ], ['-', ]] 
   ```

3. Consider a “linked” representations of a BinaryTree. For the expression \(((4 + 5) * 7)\), the binary tree would be:

   ```python
class BinaryTree:
    def __init__(self, rootObj):
        self.key = rootObj
        self.leftChild = None
        self.rightChild = None
    
key '***'
leftChild rightChild

key '+'
leftChild rightChild

key '4'
leftChild rightChild

key '7'
leftChild rightChild

key '5'
leftChild rightChild
```
import operator

class BinaryTree:
 def __init__(self, rootObj):
 self.key = rootObj
 self.leftChild = None
 self.rightChild = None

 def insertLeft(self, newNode):
 if self.leftChild == None:
 self.leftChild = BinaryTree(newNode)
 else:
 t = BinaryTree(newNode)
 t.left = self.leftChild
 self.leftChild = t

 def insertRight(self, newNode):
 if self.rightChild == None:
 self.rightChild = BinaryTree(newNode)
 else:
 t = BinaryTree(newNode)
 t.right = self.rightChild
 self.rightChild = t

 def isLeaf(self):
 return ((not self.leftChild) and
 (not self.rightChild))

 def getRightChild(self):
 return self.rightChild

 def getLeftChild(self):
 return self.leftChild

 def setRootVal(self, obj):
 self.key = obj

 def getRootVal(self):
 return self.key

 def inorder(self):
 if self.leftChild:
 self.leftChild.inorder()
 print(self.key)
 if self.rightChild:
 self.rightChild.inorder()

 def preorder(self):
 print(self.key)
 if self.leftChild:
 self.leftChild.preorder()
 if self.rightChild:
 self.rightChild.preorder()

 def postorder(self):
 if self.leftChild:
 self.leftChild.postorder()
 if self.rightChild:
 self.rightChild.postorder()
 print(self.key)

 def printexp(self):
 if self.leftChild:
 print('(', end=' ')
 self.leftChild.printexp()
 print(self.key, end=' ')
 if self.rightChild:
 self.rightChild.printexp()
 print(')', end=' ')

 def postordereval(self):
 opers = {'+': operator.add, '-': operator.sub,
 '*': operator.mul, '/': operator.truediv}
 res1 = None
 res2 = None
 if self.leftChild:
 res1 = self.leftChild.postordereval()
 if self.rightChild:
 res2 = self.rightChild.postordereval()
 if res1 and res2:
 return opers[self.key](res1, res2)
 else:
 return self.key

Some corresponding external (non-class) functions:

def inorder(tree):
 if tree != None:
 inorder(tree.getLeftChild())
 print(tree.getRootVal())
 inorder(tree.getRightChild())

The code for printexp and postordereval is similar to preorder.

Examples of usage:

tree = BinaryTree('A')
tree.insertLeft('B')
tree.insertRight('C')
tree.printexp() # Output: (A)
tree.preorder() # Output: A

The data structures for A, B, and C are as follows:
A
/\
B C
b) If `myTree` is the `BinaryTree` object for the expression: `(4 + 5) * 7`, what gets printed by a call to:

<table>
<thead>
<tr>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>myTree.inorder()</td>
</tr>
<tr>
<td>myTree.preorder()</td>
</tr>
<tr>
<td>myTree.postorder()</td>
</tr>
<tr>
<td>inorder(myTree)</td>
</tr>
</tbody>
</table>

c) If `myTree` is the `BinaryTree` object for the expression: `(4 + 5) * 7`, what gets printed by a call to `myTree.printexp()`?
d) If `myTree` is the `BinaryTree` object for the expression: `(4 + 5) * 7`, what gets returned by a call to `myTree.postordereval()`?
e) Write the `height` method for the `BinaryTree` class.

4. Consider the Binary Search Tree (BST). For each node, all values in the left-subtree are < the node and all values in the right-subtree are > the node.

\[\begin{array}{c}
50 \\
30 \quad 70 \\
34 \quad 58 \quad 80 \\
9 \quad 32 \quad 47 \\
18
\end{array} \]

a. What is the order of node processing in a preorder traversal of the above BST?
b. What is the order of node processing in a postorder traversal of the above BST?
c. What is the order of node processing in an inorder traversal of the above BST?
d. Starting at the root, how would you find the node containing “32”?
e. Starting at the root, when would you discover that “65” is not in the BST?
f. What would be the preorder traversal of the BST?
g. What would be the postorder traversal of the BST?
h. Starting at the root, where would be the “easiest” place to add “65”?
i. Where would we add “5” and “33”?