6. The shape of a BST depends on the order in which values are added (and deleted).

a) What would be the shape of a BST if we start with an empty BST and insert the sequence of values:

70, 90, 80, 5, 30, 110, 95, 40, 100

[2]
[2]
[3]
[4]
[14]
[14]
[14]
[14]
[14]

b) If a BST contains n nodes and we start searching at the root, what would be the worst-case big-oh O() notation for a successful search? (Draw the shape of the BST leading to the worst-case search)

7. We could store a BST in an array like we did for a binary heap, e.g. root at index 1, node at index i having left child at index 2 * i, and right child at index 2 * i + 1.

a) Draw the above BST (after inserting: 70, 90, 80, 5, 30, 110, 95, 40, 100) stored in an array (leave blank unused slots)

. 0	. 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	29,	
hedex of Nov Deed	70	5	90		30	80	110				40			95								100	

b) What would be the worst-case storage needed for a BST with n nodes?

8. a) If a BST contains n nodes, draw the shape of the BST leading to best, successful search in the worst case.

b) What is the worst-case big-oh Q() notation for a successful search in this "best" shape BST?

1. An AVL Tree is a special type of Binary Search Tree (BST) that it is height balanced. By height balanced I mean that the height of every node's left and right subtrees differ by at most one. This is enough to guarantee that a AVL tree with n nodes has a height no worst than $O(1.44 \log_2 n)$. Therefore, insertions, deletions, and search are worst case $O(\log_2 n)$. An example of an AVL tree with integer keys is shown below. The height of each node is shown.

Each AVL-tree node usually stores a *balance factor* in addition to its key and payload. The balance factor keeps track of the relative height difference between its left and right subtrees, i.e., height(left subtree) - height(right subtree).

- a) Label each node in the above AVL tree with one of the following balance factors:
 - 0 if its left and right subtrees are the same height
 - 1 if its left subtree is one taller than its right subtree
 - -1 if its right subtree is one taller than its left subtree
- b) We start a put operation by adding the new item into the AVL as a leaf just like we did for Binary Search Trees (BSTs). Add the key 90 to the above tree.
- c) Identify the node "closest up the tree" from the inserted node (90) that no longer satisfies the height-balanced property of an AVL tree. This node is called the *pivot node*. Label the pivot node above.
- d) Consider the subtree whose root is the pivot node. How could we rearrange this subtree to restore the AVL height balanced property? (Draw the rearranged tree below)

- 2. Typically, the addition of a new key into an AVL requires the following steps:
- compare the new key with the current tree node's key (as we did in the _put function called by the put method in the BST) to determine whether to recursively add the new key into the left or right subtree
- add the new key as a leaf as the base case(s) to the recursion
- recursively (updateBalance method) adjust the balance factors of the nodes on the search path from the new node back up toward the root of the tree. If we encounter a pivot node (as in question (c) above) we perform one or two "rotations" to restore the AVL tree's height-balanced property.

For example, consider the previous example of adding 90 to the AVL tree. Before the addition, the pivot node (60) was already -1 ("tall right" - right subtree had a height one greater than its left subtree). After inserting 90, the pivot's right subtree had a height 2 more than its left subtree (balance factor -2) which violates the AVL tree's height-balance property. This problem is handled with a *left rotation* about the pivot as shown in the following generalized diagram:

a) Assuming the same initial AVL tree (upper, left-hand of above diagram) if the new node would have increased the height of $T_{\rm C}$ (instead of $T_{\rm E}$), would a left rotation about the node B have rebalanced the AVL tree?

b) Before the addition, if the pivot node was already -1 (tall right) and if the new node is inserted into the left subtree of the pivot node's right child, then we must do two rotations to restore the AVL-tree's height-balance property.

b) Suppose that the new node was added in T_C instead of T_E, then the same two rotations would restore the AVL-tree's height-balance property. However, what should the balance factors of nodes B, D, and F be after the rotations?

node

Consider the AVLTreeNode class that inherits and extends the TreeNode class to include balance factors.

```
from tree_node import TreeNode

class AVLTreeNode(TreeNode):
    def __init__(self,key,val,left=None,right=None,parent=None, balanceFactor=0):
        TreeNode.__init__(self,key,val,left,right,parent)
        self.balanceFactor = balanceFactor
```

Now let's consider the partial AVLTree class code that inherits from the BinarySearchTree class:

```
from avl_tree_node import AVLTreeNode
from binary search tree import BinarySearchTree
class AVLTree(BinarySearchTree):
   def put(self, key, val):
        if self.root:
            self._put(key,val,self.root)
            self.root = AVLTreeNode(key, val)
        self.size = self.size + 1
        _put(self,key,val,currentNode):
        if key < currentNode.key:
            if currentNode.hasLeftChild():
                self._put(key,val,currentNode.leftChild)
                currentNode.leftChild = AVLTreeNode(key,val,parent=currentNode)
                self.updateBalance(currentNode.leftChild)
        elif key > currentNode.key:
            if currentNode.hasRightChild():
                self._put(key,val,currentNode.rightChild)
                currentNode.rightChild = AVLTreeNode(key,val,parent=currentNode)
                self.updateBalance(currentNode.rightChild)
        else:
            currentNode.payload = val
            self._size -= 1
   def updateBalance(self, node):
        if node.balanceFactor > 1 or node.balanceFactor < -1:
           self.rebalance(node)
            return
        if node.parent != None:
            if node.isLeftChild():
                node.parent.balanceFactor += 1
            elif node.isRightChild():
                node.parent.balanceFactor -= 1
           if node.parent.balanceFactor != 0:
                self.updateBalance(node.parent)
                                                      ## NOTE: You will complete rotateRight in Lab
   def rotateLeft(self,rotRoot):
       newRoot = rotRoot.rightChild
       rotRoot.rightChild = newRoot.leftChild
if newRoot.leftChild != None:
           newRoot.leftChild.parent = rotRoot
       newRoot.parent = rotRoot.parent
       if rotRoot.isRoot():
           self.root = newRoot
       else:
           if rotRoot.isLeftChild():
               rotRoot.parent.leftChild = newRoot
           else:
                rotRoot.parent.rightChild = newRoot
       newRoot.leftChild = rotRoot
       rotRoot.parent = newRoot
       rotRoot.balanceFactor = rotRoot.balanceFactor + 1 - min(newRoot.balanceFactor, 0)
       newRoot.balanceFactor = newRoot.balanceFactor + 1 + max(rotRoot.balanceFactor, 0)
   def rebalance(self, node):
       if node.balanceFactor < 0:
           if node.rightChild.balanceFactor > 0:
                self.rotateRight(node.rightChild)
                self.rotateLeft(node)
           else:
               self.rotateLeft(node)
       elif node.balanceFactor > 0:
           if node.leftChild.balanceFactor < 0:
                self.rotateLeft(node.leftChild)
                self.rotateRight (node)
           else:
                self.rotateRight(node)
```