Data Structures (CS 1520) Lecture 20 Name:
6. The shape of a BST depends on the order in which values are added (and deleted).

a) What would be the shape of a BST if we start with an empty BST and insert the sequence of values:
70, 90, 80, 5, 30, 110, 95, 40, 100

b) Ifa BST contains n nodes and we start searching at the root, what wouldBe the worst-case big-oh O() notation for
a successful search? (Draw the shape of the BST leading to the worst-case search)

Y . o
0 a ™
] @ o
7. We could store a BST in an array like we did for a binary heap, e.g. root at index 1, node at index i having left

child at index 2 * i, and right child at index 2 * i + 1.
a) Draw the above BST (after inserting: 70, 90, 80, 5, 30, 110, 95, 40, 100) stored in an array (leave blank unused

slots)

0,1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ____,24/\
i 101 519 |30 %010 Z as” - MJM'
b) What would be the worst-case storage needed for a BST with n nodes? \@ {
N

L4

8. a) Ifa BST contains n nodes, draw the shape of the BST leading to best, successful search in the worst case.

—— "

N 8

%élgwwﬁ

g .

47

b) What is the worst-case big-oh Q() notation for a successful search in this “best” shape BST?

Log .
Lecture 20 Page 2




Data Structures (CS 1520) Lecture 23 Name:

1. An AVI Tree is a special type of Binary Search Tree (BST) that it is height balanced. By height balanced ] mean
that the height of every node’s left and right subtrees differ by at most one. This is enough to guarantee that a AVL
tree with n nodes has a height no worst than O(1.44 log; n). Therefore, insertions, deletions, and search are worst case
O(logn). An example of an AVL tree with integer keys is shown below. The height of each node is shown.

Each AVL-tree node usually stores a balance factor in addition to its key and payload. The balance factor keeps track
of the relative height difference between its left and right subtrees, i.e., height(left subtree) - height(right subtree).
a) Label each node in the above AVL tree with one of the following balance factors:

» (ifits left and right subtrees are the same height

o 1 ifits left subtree is one taller than its right subtree

» -1 ifits right subtree is one taller than its left subiree

b) We start a put operation by adding the new item into the AVL as a leaf just like we did for Binaty Search Trees
(BSTs). Add the key 90 to the above tree.

¢) Identify the node “closest up the tree” from the inserted node (90) that no longer satisfies the height-balanced
property of an AVL tree, This node is called the pivor node. Label the pivot node above.

d) Consider the subtree whose root is the pivot node. How could we rearrange this subtree to restore the AVL height
balanced property? (Draw the rearranged tree below)

Lecture 23 Page 1




Data Structures (CS 1520) Lecture 23 Name:

. Typically, the addition of a new key into an AVL requires the following steps:

* compare the new key with the current tree node’s key (as we did in the _put function called by the put method
in the BST) to determine whether to recursively add the new key into the left or right subtree

+ add the new key as a leaf as the base case(s) to the recursion

s recursively (updateBalance method) adjust the balance factors of the nodes on the search path from the new node

back up toward the root of the tree. If we encounter a pivot node (as in question (c} above) we perform one or two

“rotations” to restore the AVL tree’s height-balanced propetty.

[R]

For example, consider the previous example of adding 90 to the AVL tree. Before the addition, the pivot node (60)

was already -1 (“tall right” - right subtree had a height one greater than is left subtree). After inserting 90, the pivot’s
right subtree had a height 2 more than its left subtree (balance factor -2) which violates the AV tree’s height-balance
property. This problem is handled with a /eff rotation about the pivot as shown in the following generalized diagram:

Before the addition: After the addition, but before rotation:
from parent from parent

Recursive updateBalance method finds the pivot
and calls the rebalance method to perform proper rotation(s)

(D's balance factor was already adjusted before
Rotate o the pivot is found by the recursive updateBalance
Left at

Pivot

method which moves toward the root)

After left rotation at pivot:

\ from parent

a) Assuming the same initial AVL tree (upper, left-hand of above diagram) if the new node would have increased the
height of T¢ (instead of Tg), would a left rotation about the node B have rebalanced the AV, tree?

Lecture 23 Page 2




Data Structures (CS 1520) Lecture 23 Name:

b) Before the addition, if the pivot node was already -1 (tall right) and if the new node is inserted into the left subtree
of the pivot node's right child, then we must do two rotations to restore the AVL-tree’s height-balance property.

Before the addition: After the addition, but before first rotation:
from parent from parent

Recursive updateBalance finds the pivot
and calls rebalance method to perform rotation(s)

‘\ D's & F's balance factors have
alrecady been adjusted before
the pivot was found

F TA
height
s, n-1
\
\
N, Te
~ \ heri g-hi heé g_h{
new
node

After the left rotation at pivot and After right rotation at F, but
balance factors adjusted correctly: before left rotation at pivot:
from parent from parent

'@

Rotate

Leftat &~
Pivot .

b) Suppose that the new node was added in T instead of Ty, then the same two rotations would restore the
AVL-tree’s height-balance property. However, what should the balance factors of nodes B, D, and F be after the
rotations?

Lecture 23 Page 3




Data Structures (CS 1520) Lecture 23 Name:
Consider the AVLTreeNode class that inherits and extends the TreeNode class to include balance factors.

from tree node import TreeNode

¢lass AVLTreeNode (TreeNode) :
def init_ (self,key,val,left=None,right=None, parent=None, balanceFactor=0):
TreeNode. _init__ {self,key,val,ieft,right,parent}
self.balanceFactor = balanceFactor

Now let’s consider the partial AVLTree class code that inherits from the BinarySearchTree class:

from avl_tree_ncde import AVLTreeNode
from binary search tree import BinarySearchTree

class AVLTree (BinarySearchTree) :

def puti{self,key,val):
if self.root:
self. put(key,val,self.rcot)
else:
self.root = AVLTreeNode (key,val)
self.size = self.size + 1

def put(gelf, key,val, currentNode) :
if key < currentNode.key:
if currentNode, hasLeftChild():
self., put (key,val, currentNode.leftChild)

else:
currentNode.leftChild = AVLTreeNode (key,val, parent=currentNode} .
self.updateBalance {currentNode,leftChild) i
elif key > currentNode.key: //
if currentdeode.hasRightChild{): / /
self. putikey,val, currentNede.rightChild) r (f»
else: ’ J;)
currentNode.rightChild = AVLTreeNode{key,val,parent=currentNode} // ;
self ., updateBalance (currentNode . rightChild) T — o -
elge:
currentNode,payload = val — rﬁf:)
self. size -= 1 — y L
9<% -
def updateBalance{self,node): ///

if node.balanceFactor » 1 or node.balanceFactor < -1t
self, rebalance {node}
return

AL
if node.parent != None: an
if node.isLeftChild(): , / f
C gy

node,parent.balanceFactor += 1
elif node,isRightChild{};
node.parent.balanceFactor -= 1

1f node.parent.balanceFactor = 0: s
self ,updateBalance {node,parent) (;{)
def rotateheft {self, rotRoot): ## NOTE: You will complete rotateRight in Lab
newRoot = rotRoot.rightChild
rotRoot,rightChild = newRoot,leftChilg
i1f newRoot,leftChild != None:
newRoot .leftChild.parent = rotRoot
newRoot .parent = rotRoot.parent
if rotRoot.isRcot{):
self.rbot = newRoot
alse:
if robRoot.iskLeftChila():
rotRoot,.parent.leftChild = newRoot
elge:
rotRoot .parent.rightChild = newRoot
newRocot.leftChild = rotRoot
rotRook .parent = newRoob
rotRoot .balanceFactor = rotRoct.balanceFactor + 1 - min{newRoot.balanceFactor, 0)
newRcot .balanceFactor = newRoot.balanceFactor + 1 + max{rotRoot.balanceFactor, 0}

def rebalance({self,node):
1f node.balanceFactor < 0:
if node.rightChild.balanceFactor > 0:
gelf,rotateRight {node.rightChild}
self . rotateLeft (ncde) ;
elge:;
gelf,rotateLeft (nede}
elif node.balanceFactor » 0:
if node.leftChild.balanceFactor < 0:
self .rotateLeft (node,leftChild)
self,rotateRight {node)
else:
self,rotateRight (node)

Lecture 23 Page 4




