Data Structures (CS 1520) Lecture 23 Name:
1. An AVL Tree is a special type of Binary Search Tree (BST) that it is height balanced. By height balanced I mean
that the height of every node’s left and right subtrees differ by at most one. This is enough to guatantee thata AVL
tree with n nodes has a height no worst than O(1.44 log: n), Thetefore, insertions, deletions, and search are worst case
O(logzn). Anexample of an AVL tree with integer keys is shown below, The height of each node is shown,

Each AVI.-tree node usually stores a balance fuctor in addition to its key and payload. The balance factor keeps track
of the relative height difference between ifs left and right sublrees, i.e., height(left subtree) - height(right subtree).
a) Label each node in the above AVL tree with one of the following balance faclors:

+ (ifits left and right subtrees are the same height

+ 1 ifits left subtree is one taller than its right subtree

¢ -1 ifits right subtree is one taller than its lefi subtree

b) We start a put operation by adding the new item into the AVL as a leaf just like we did for Binary Search Trees
(BSTs). Add the key 90 to the above tree,

¢) Identify the node “closest up the tree" from the inserted node (90) that no longer satisfies the height-balanced
property of an AVL tree. This node is called the pivot rode. Label the pivot node above,

d) Consider the subtree whose root is the pivot node. How could we reatrange this subtree to restore the AVL height
balanced property? (Draw the rearranged tree below)

W,

Lecture 23 Page |

Data Structures (CS 1520) Lecture 23 Name:

2. Typically, the addition of a new key into an AV requires the following steps:
+ compare the new key with the current tree node’s key (as we did in the _put function called by the put method

in the BST) to deteimine whether to recursively add the new key into the left or right subtree

s add the new key as a leaf as the base case(s) to the recursion
s recutsively (updateBalance method) adjust the balance factors of the nodes on the search path from the new node

back up toward the root of the tree. If we encounter a pivot node (as in question {¢) above) we perform one or two
“rotations” to restore the AVL tree’s height-balanced property.

For example, consider the previous example of adding 90 to the AVL tree. Before the addition, the pivot node (60)
ts left subtree), After inserting 90, the pivot’s

was already -1 (“tall right” - right subtree had a height one greater than i
right subtree had a height 2 more than its left subtree (balance factor ~2) which violates the AVL {ree’s height-balance

property. This problem is handled with a left rotation about the pivot as shown in the following generalized diagram:

Before the addition: After the addition, but before rofation:

from parent from parent
1 ‘ .

Recursive updateBalance method finds the pivot
and calls the rebalance method 1o perform proper rotation(s)

(D's balance factor was already adjusted before
the pivot is found by the recursive updateBalance
method which moves toward the xoot)

After Ieft votation at pivot:

x from parent
'VM(

R

a) Assuming the same initial AVL tree (upper, left-hand of above diagram) If the new node would have increased the
height of T (instead of Tx), would a left rotation about the node B have rebalanced the AVL tree?

Lecture 23 Page 2

Data Structures (CS 1520) Lecture 23 Name:

b) Before the addition, if the pivot node was alteady -1 (tall right) and if the new node is insexted into the left subree
of the p\ivot node's right child, then we must do two rotations to restore the AVL-tree’s height-balance property.

Before the addition: After the addition, but before fivst rotation:

from parent from parent

Recursive updateBalance finds the pivot
and calls rebalance method to perform rotation(s)

D's & F's balance factors have
already been adjusted before
the pivot was found

1st Rotale
Right at

leight
n-1i

I
After the left rotation at pivot and After vight rotation at F, but
balance factors adjusted correctly: before left votatton af pivot:
from parent from parent

b) Suppose that the new node was added in Tc instead of Ty, then the same two rotations would restore the
AVL-tree’s height-balance property, However, what should the balance factors of nodes B, D, and F be after the
rotatlons?

Lecture 23 Page 3

Data Structures (CS 1520) Lecture 23 Name:
Consider the AVLTreeNode class that inherits and extends the TreeNode class to include balance factors.

from tree node import TreeNode

¢lags AVLTreeNode (reeNode} 4 .
def __init_ (self,key,val,leftuNone, right=None, parent=None, balanceFaotor=0}i

TreeNcde._ inlk_ {self, key,val,left, right,parent)
self ,balancePactor = balanceractor

Now let’s consider the partial AVLTree class code that inherits from the BinarySearchTree class:

fxom avl_tree node import AVLTreeNode
from binary search_tree import BinarySearchTree

olass AVLTree {BinarySearchTrea}:

def put{self, key,val}:
if solf.vook:
solf. put(key,val,self, xoot}
alse:
salf , root = AVLTreeNode (key,val}
gelf,size = gelf.siza + 1

daf put{self, key,val,currentNods) ¢
if key < currentNode,key:
if currentNode,hasLeftChild({};
self, put[key,val, currentNode,leftChild)
elseat
cuxrentode, leftCchild = AVILTraoNoda{kay,val,parentmcurrentiode}
self. updateBalance {current¥ode,laftChila) /
elif key > currentNode,kay!: /
if currentNode.hasRightcChild(): ;
self._put{key,val, currentiode,rightChild) A (i:)
alaa; .
currentNode.rightChild = AVLTreeNode(key,val,parent=currentNode} ‘// i
salf,updateRalance {currentiode,rightChild) . . "

elga:) o
currentiode.payload = val

gelfi._slze = 1 (i;i;;"zim

def updateBalance({self, node}:
if node.balanceFactor > 1 or node,balanceFactor < -1t

salf,rebalance {node)
return
if nede.parent |= Noney
1f node.islefiChild{): .
noda,parent.balanceFackor +» 1 ™
elif node,.isRightChilda(}: 1

noda.parent ,balancaPactor -= 1

if node.parent,balanceFactox |= 0t)
aelf,updateBalance {node, parent) {J,
def rotateLeft [self,rotRoot}: ## NOTE: You will complete rotateRight in Lab

nawRoot = rotRoot,rightChild
rotRoot . rightChild = newRoot . leftchild
if newRoot,leftChild |= None:
nawRook . laeftChild.paxent = rotRoot
newRook .parant. = rotRoot.parent
if rotRoot.{sRoot{):
self.xoot = newRoot
alsa:
1f rotRoot,isheftcChild({):
rotRoot . parent,leftChild = newRook
elye:
rotRoot .parent.rightchild = newRookt
newRoot ,lafiChild = rotReot
rotRoot.parent = newRoot
rotRoot .balanceFactor =
newiloot .balanceFactor =

rotRookt.balanceFackor 4+ 1 - min(newRoot.balanceFactor, 0)
nawRoot , balanceFackor + 3 + max({xotRoot,balanceFactor, 0)

def xebalance{self,noda):
if node.balanceRactor < G '
if node,rightchild,balanceFactor » 01t
self,rotateRight (node.rightChild)
self,rotateleft (node}]
elgay
gelf.rotatelefl {node}
alif nodae.balanceFactor > 0@
if node,leftChild.balancePactor < 0
self.rotateLoft (node,leftChild)
self, rotateRight {node)
elae:
aelf, rotateRight {noda)

Lecture 23 Page 4

Data Structures (CS 1520) Lecture 23 Name:
c¢) Trace the code for myAVL, put (90, None) by updating the below diagram:
myAVL AVLTree obj ect

Q/ Cer ~ O ﬁ/ch..\

@2 @

Consider balance factor formulas for rotateLeft. We know: newBal(B) = h, - hc and oldBal(B) = h - (1-+max(hc, he))

newBal(D) :(H max{(h., hc))’- he and oldBal(D) = hc - hg
' ~min(—x, *Y) =Y max(x y)=y
) - <+ | } 1 >
Before left rotation: After left rotation at pivot: -y -x 0)‘(
rotR:(KJt nevlvRoat -max(-x, -y} = x mmt,(y) =X

"\
Consider: - newBal(B) - oldBal(Bloz /M (1+¢m o)
newBal(B) - oldBal(B) =\, - hg -'hy + (I+max(he, hi))
newBal(B) - oldBal(B) = 1 + max(he, hz) - he :
newBal(B) - oldBal(B) 7 1 + max(hc, hg) - hc .
newBal(B) oldBaf(B)JrI + max(hc- he, hg - he)

\ newBal(B) oldBaZ(B) + 1 + max(0, -oldBala)))
he;lght i newBal(B) = oldBal(B) +1 - min(0, oldBal(D)), S0
A h

rotRoot balanceFactor = rotRoot.balanceFactor + 1 -

. rotRoot

. newRoot / \

2 !Mm(% b ;é/f‘L\ _4_%

MH’MQ)&(AA g,\) L\
%‘“Vé’lé’c)(‘Cl’\A“’é\c \% «»Z%>

o3l (0)- o lABA)Y + Max (netglédl(@) Q)
nenBalll) = ols Jiﬁ@ (D) + Ut may (newtal(B) 0 et 25 P

J‘Q*-H ;ﬁl Ls(at ‘\uf&t‘{eﬁru ftew/mf é fme(fﬂ@"ﬁﬁ‘ %H’“&Mff(f‘m;’w{é f«;»/,we(y.{;,”@

d) Consider: newBal(D) - olciBal(D) H Ma)g@,l 4 lﬂc) _ J\ E% (ﬂlil\(newRoot ‘bajanceractor, 0}

Data Structures (CS 1520) Lecture 23 . Name:

3. Complete the below figure which is a “mirror image” to the figure on page 2, i.e., inserting into the pivot’s left
child’s feft subtree. Include correct balance factors after the rotation.

Before the insertion: After the insertion, but before rotation:
from parent from parent

f\

Rotate ..
Right at s

b) Complete the below figure which is a “mirror image” to the figure on page 3, i.e., inserting into the pivot’s left
child’s right subtree. Include correct balance factors after the rotation.

Before the insertion: After the insertion, but before first rotation:

from parent from parent

A T, T,
height :
RAWA ANV
After the right rotation at pivet and After left rotation at B, but
balance factors adjusted correetly: before right rotation at pivot:

Lecture 23 Page 6

Data Structures (CS 1520)

Lecture 24

hdiga jme

1. BST, AVL, trees, and hash tables can all be used to implemen

LS

Dictionary Successful Search Comparisons with I0,000.Intng items (Time in seconds) ¢4 ¢
Items added in sorted I;en‘f’ added in random ﬂ)l der did not mattér
order order (Hash table sizes 2" = 32K)
BST AVL Tree BST AVL Tree | Open Addr. Closed Addr.
(Quadratic) (Chaining)
Total add/put time 47.785 0.205 0.119 0.195 0.064 0.074
Total search time 38.100 0.060 0.079 0.062 0.044 0.039
Height of resulting tree 9,999 13 30 15 NA NA

a} The puts of these 10,000 randomly ordered items into the BST took 0.119 seconds and 0.195 seconds into the
AVL tree. Why did the BST puts take less time eventhough the final helght was 30 vs, a final AVL tree height of

15? extra Hdme da AL/E. 'ﬁ; M A %"ﬁ'ﬁ? ?f\%ffﬂmﬁ { S‘)

b) With a very, very poor hash function or very, very bad choice of keys, then all keys could hash to the same home
address.
* What would be the worst-case big-oh of open-address hashing with quadratic probing?@ (‘ iy

* What would be the worst-case big-oh of chaining usmg a linked list at each home addless}y 2.,

d

* What would be the worst-case big-oh of chaining using an AVL free at each home address?

o
gy - { O *;.-({ ‘9 fﬂ)

SEEPETPER RS |

B £

Yoy

jhainingDict)?

Hash Table

J\W% AVL Tree containing

all "n” items in the
hash table

th oW N =

2. The data structures we have discussed so far are all in-memory, i.¢., data is stored in main/RAM memory. Data
can also be stored on secondary storage in a file (e.g., moiveData.ixt file). Currently, most secondary storage
consists of hard-disks.

a) Complete the following table comparing main/RAM memory vs. hard-disk:

Criteria Main/RAM memory Hard-disk Drive Solid-State Drive

Size on a typical desktop computer

Average access time

b) Which criterion seems to be the most important difference between the main and secondary memories?

Lecture 24 Page 1

