Data Structures (CS 1520) Lecture 26

4. Section 7.5 uses recursion and the run-time stack to
implement a DFS traversal, The pFseraph uses a time
attribute to note when a vertex if first encountered
(aiscovery attribute) in the depth-first search and when a
vertex in backtracked through (£inish attribute). Consider
the graph for making pancakes where vertices are steps and
edges represents \the partial order among the steps.

Name:
from graph import Graph
class DFSGraph (Graph) : nl(LPb(
def _ indit (seif}:
guper(}.__init_ (} /@//f’z &
geif.time = 0 e
def dfs{self): Mgéﬁ;ﬁﬂ
for aVertex in self:
aVertex.setColor{'white’)
avVertex.setPred (-1}
for aVertpx in self:
if aVertex.getColor({} == ‘white':
self, dfsv181t4aVertex)
P
def dfavisit(self,startVertex):

startVertex,setColor{'gray')

gelf.time += 1

gtartVertex. setblscovery{self time)

for nextyertex in startvertex. getConnections({}:

if néxtVertex.getlolor|) =="'white':

nextVertex, setPred(startVertex)
self,dfsvisit inextVeyrtex)

startVertex.setColor | black')

gelf.time += 1

startVertex,setFinish(self.time)
' ' o

a) Assume (why is this a bad assumption???) that the for-loops alway iterate through the vertexes alphabetically (e.g.,
“eat”, “egg”, “flour”, ...) by their id. \Write on the above graph the discovery and £inish atiributes assigned to cach

vertex by executing the dfs methodX ¢

b) A topological sort algorithm can use the dfs discovery and £inish attributes to determine a proper order to avoid
putting the "cart before the horse." For example, we don't want to “pour % cup of batter" before we "mix the batter”,
and we don't want to "mix the batter" until all the ingredients have been added. Outline the steps to perform a

topological sort.

DNC!’A/(% ondlo c;a‘(‘R’%s’é e 7

ol
mclle
heaf
Pl
eq9
?%1?1?<5
Syrep
(Qov P

wrr‘\

-@ﬂl

Lecture 26 Page 3

Data Structures (CS 1520) Lecture 26 Name:

Dijkstra’s Algorithm is a greedy algorithm that finds the shortest path from
some vertex, say vy, to all other vertices. A greedy algorithm, unlike
divide-and-conquer and dynamic programming algorithms, DOES NOT divide
a problem info smaller subproblems, Instead a greedy algorithm builds a
solution by making a sequence of choices that look best ("locally” optimal) at
the moment without regard for past or future choices (no backtracking to fix
bad choices). Dijkstra’s algorithm builds a subgraph by repeatedly selecting
the next closest vertex to v that is not already in the subgraph. Initially, only
vertex v is in the subgraph with a distance of 0 from itself.

a) What would be the order of vertices added to the subgraph during Dijkstra’s algorithm?
Vo, v V v \._/ ?
ST
ViV,)

b) What greedy criteria did you use to select the next vertex to add to the subgraph?

One WJ'J/< féowﬁ?n" J{‘“f"?&’mﬁé 1 U

¢) What data structure could be used t7fic'ently determine that selection?

Pr"l.ﬂr‘*t“k/ ikg__é? e }/Iq {\,w\ jﬁ éx /g

d) How might this data structure need to be modified? ¥ b4 (//
W e) adjesr
[AT L J

/,:]03"(2?/‘;7[/"@’//?\/67/67/\&?

7 ’ C@é«;‘j)

"g Ve r‘“fr\c“ff,r
o pereUp |

Lecture 26 Page 4

- Data Structures (CS 1520) Lecture 27 Name:

1. Suppose you had a map of settlements on the planet X
(Assume edges could connecting all vertices with their Euclidean distances as their costs)

......

We want to build roads that aliow us to travel between any pair of cities. Because resources are scarce, we want
the total tength of all roads build to be minimal. Since all cities will be connected anyway, it does not matter
where we start, but assume we start at “‘a

a)} Assuming we start at city “a” g hich c1ty would you connect first? bWhy this city?

L4+ is5 the ch%ﬁ/ @f?f 1%
b) What city would you connect next to expand your partial road netwmk? _ ,
r"@(‘f ¢ 195‘%-{ o Ay {9/1:47 A)Q.ém’f«fe l roalk S e
(IQN“")”'{V :?M@m@ /ﬁ’lm Zm)
afe connected

¢) What would be some chalactenstzcs of the resulting "graph" after all the cmes ﬁ} A
4 ¢

W’Me&f‘ﬂj @JW\{?K W“ﬁté\ Ao (Vﬁ“{é’g Sy %F’{é‘ i}

d) Does your algorithm come up with the overall best (globally optimal) result?

begles b /mp, ﬁp@m " j

Lecture 27 Page 1

Data Structures (CS 1520) Lecture 27 Name:

2. Prim’s algorithm for determining the minimum-spanning tree (MST) of a graph is another example of a
greedy algorithm, Unlike divide-and-conquer and dynamic programming algorithms, greedy algorithms DO
NOT divide a problem into smaller subproblems. Instead a greedy algorithm builds a solution by making a
sequence of choices that look best ("locally" optimal) at the moment without regard for past or future choices (ho
backtracking to fix bad choices).

a) What greedy criteria does Prim’s algorithm use to select the next vertex and edge to the partial minimum

spanning tree? VQV‘ ‘%uﬁ ot (() ser ?J 3 %@ ﬁﬂy waﬁ?{ﬁﬁ‘ (;"L\ !@é@f@y{,‘,;\ f M7

b) Consider the textbook’s Prim’s Algorithm code (Listing 7.12 p. 346) which is incorrect.

def prim{G, start):
pgq = PriorityQueue(}
for v in G;:
v.getDigtance {sys.maxsize)
v.setPred (None)
start.setDistance {0}
pg.buildieap ([(v.getDistance(},v) for v in Gl)
while not pg.isEmpty():
currentVert = pg.delMin()
for nextVert in currentVert,getConnections():
newCost = currentVert.getWeight (nextVert) \
+ currentVert.getDistance ()}
if v in pg and newCost<nextVert,getDistance():
nextVert, setPred (currentvert)
nextVert.gsetDistance {newCost)

pq.decreaseKey (nextVert, newCost)

¢) What is wrong with the code? (Fix the above code.)

3. To avoid “massive” changes to the BinHeap class, it can store PriorityQueueEntry objects:

class PriorityQueueEntry:

def init_ {self,x,y}: def _ 1t (self,other):
gself . key = x return self.key < other.key
self.val = y

def gt {self,other}:
def getKey({self)}: return self.key > other.key
return self.key

def _eq_ ({self, other}:
def getvValue{self): return self.val == other.val
return self.val
def _ hash__(self}:
def setValue{self, newvValue): return self.key
self.val = newValue

a) Update the above Prim’s algorithm code to use PriorityQueueEntxy objects.
b) Whydothe 1t and gt methods compare ey attributes, but __eq compare val attributes?

Lecture 27 Page 2

