.

The Final exam is Tuesday May 1 from 8:00 - 9:50 AM in Wright 9. It will be closed-book and notes,
except for three 8” x 11 sheets of paper containing any notes that you want. (Plus, the Python Summary
Handout) About 75% of the test will cover the following topics (and maybe more) since the second
mid-term test, and the remaining 25% will be comprehensive (mostly big-oh analysis and general
questions about stacks queues, priority qucues/heaps lists, and recursmn)

Chapte:ﬁ 'I‘lees — (;@@Q; j:{&’{&'? {{Lm @f}gﬁf @V@if‘ Céi é
; paretit

" Terminology: node, edge, root, chil siblings, leaf, interior node, branch, descendant ancestoz,
path, path length, depth/level, height, subtrce "~

General and binary tree recursive definitions) .

Tree shapes and their heights: full binary tree, balanced binary tree, complete binary tree
Applications: parse tree, heaps, binary search trees, expression trees

Traversals: inorder, preorder, postorder
" Binary search tree ADT: interface, implementation, big-oh of operations

Balanced bmary search trees: AVL tree ADT: interface, implementation, big-oh of operations e

Tile Structures Lecture 24 handout: : '
http:/fwww.cs.uni. edu/~ﬁenup/csl§2051 8/lectules/le(324 questlons pdf

We talked about how the in memory data structures need to be adapted for stow disks.
_From this discussion you should understand the general concepts of Magnetic disks:

s layout (surfaces, tracks/cylinders, sectors, R/W heads)
* access time components (seek time - moving the R/W heads over the correct track, rotational

delay - disk spins to R/W head, data transfer time - reading/writing of sector as it spins under the
R/W head)
Hash Table as a useful file structure————wree
< B+ Trees as a ugeful file structure - see web resources: \\

S

hitp://iwww.sci.unich.it/~acciato/bpiutices.pdf

http://en.mklpedia.01g/w1k1/B%2B_tlee
http://www.ceng.metu.edu.ir/~karagoz/ceng302/302-B+ree-ind-hash.pdf

Chapter 7: Graphs
Terminology: vertex/vertices, edge, path, cycle, directed graph, undirected graph

¢ Graph’ impléthentationsi adjacency matrix-and-adjacency list .
Graph traversils/searches: ‘Depth-Fust Search (DFS) and Breadth-First Search (BFS) ,,,,, o

General Idea of the following algorithms: topologlcal soit, DI_]kstla s algorlthm (single-source, shortest
path), Prim’s algorithm (determines the minimum-spanning nee)\,_:il SP)(Travelmg—Salepelson Problem)
App10x1mat10n algorithm to solve TSP, general idea of backtracking and best-first search

You should understand the graph implementations and algorithms lisied above. You should be able to
trace the algorithms on a given graph.

Rl

e preole’ §LD 30 ZS‘“\Z@ qq‘%@ 1O, (e &
P /
{)Qﬁfﬁ’?m@w« 19 2..§ 19, 30, go e

e
/C.()

AVL Al 50,70 70 60,59, 70,25 (o)
w% 2 (lw LST - 4%&5‘7)

DD G

 Data Structures (CS 1520)

9. A B+ Tree is a multi-way tree (typically in the order @ per node) vsed primarily as a file-index
structure to allow fast search (as well as insertions and delctionsyfora target key on disk, Two types of pages (B+ -
tree "nodes") exist: : :

* Data pages - which always appear as leaves on the same level of a B+ tree (usually a doubly-linked list too)

* Index pages - the root and other interior nodes above the data page leaves. Index nodes contain some minimum
and maximum number of keys and pointers bases on the B+ tree's branching factor (b) and fil] factor. A 50%
fill factor would be the minimum for any B+ tree. All index pages must have [5/27 < # child <'b, except the root
which must have at least two children.

Lecture 24 Name:

“Consjder an B+ tree example with b =35,

80 [14€

—
\

40)56\g0] l6s[70]72] [so]ss| [{[oo

a) How would you find 887

b) The insert algorithm for a B+ tree is sammatized by the below table. Where would you insert 50, 100, 105, 110,

A A A S 2 2 2 2 2 2 X XL

180, 200, 2107
Sifuation
gggPage inaar:ﬁtPage insertion Algorithm -
Fuli?
No No Place record in sorted position in the appropriate data page.
Yes No 1. Split data page with records < middle key going in left data page and records >
middle key going in right data page.
2. Place middle key in index page in sorted order with the pointer immediately to its
left pointing to the left data page and the pointer immediately to its right pointing to
the right data page. _ .
Yes Yes 1. - Split data page with records < middle key going in left data page and records > '
middle key going in right data page. \
2. Adding middle key to parent index page causes it to split with keys < middle key
l going into the left index page, keys > middle key going in right index page, and the
\ middle key inserted into the next higher level index page. If the next higher index

page is full continue to splifting index pages up the B+ tree as necessary.

121 Lecture 24 Page 5

%6@: f\’mﬁ {@m e ”é'/q;‘%(/Da

T) o o

i

to R

[’D 7 5’4 (“ “ /ﬁ? f*--‘:li} Qe f €

On)on) O

I

Z Z /,

