Data Structures (CS 1520) Lecture 2 Name:

3. General “Algorithmic-Complexity Analysis” terminology:

problem - question we seck an answer for, e.g., "What is the sum of all the items in a list/array?"
parameters - variables with unspecified values '
problem instance - assignment of values to parameters, i.¢., the specific input to the problem

0 1 23 45 6
myList: | 5[10] 2 [15{20| 1{11

sum: ?

{number of elements) n: | 7

algorithm - step-by-step procedure for producing a solution

basic operation - fandamental operation in the algorithm (i.e., operation done the most) Generally, we want to derive
a function for the number of times that the basic operation is performed related to the problem size.

problem size - input size. For algorithms involving lists/arrays, the problem size is the number of elements (“n”).

Big-oh notation (O() - As the size of a problem grows (i.e., more data), how will our program’s run-time grow.

Consider the following sumList function.

def sumList (myList):
weiReturns the sum of all items in myLisg"™
total = 0
for item in myList:
total = total +_item
return total

Tyt ki gt b O L M“'W—ﬂ--_,__

a) What is the basic operation of sunList (i.e., operation done the most) ? Q.Jﬁ! { { 1o

;
b) What is the problem size of sumList? ’(7/1 7%/4 m{? vﬂy o f 9 !

¢) Ifnis 10000 and sumList takes 10 seconds, how long would you ex ect supList to take for n of 200007
2*(9 5 Sige Wwé SuMl freg CRua j ot fpoae
d) What is the big-oh notation for sumList? 0 () "Ninea !

4. Consider the following someLoops function.

def someLoops{n): Execution flow
total = 0 i=0 i=1 i=2 i=n-1
for 1 in range(n): -

for j _in_rangeln)--
total = total +T+-D

return tOEFI et j=0toq4 .
o eesloopsndimes, | loops n times

loops n times

a) What is the basic operation of someLoops (i.., operation done the most)?%*};g /gﬁ[\% o o

b) How many times will the basic operation execute as a function of n? N &

c) What is the big-oh notation for someLoops? 0 (.&’;éa’“) 67 ef G y\(g‘{' ZC

d) If we input n of 10000 and someLoops takes 10 seconds, how long would you expect someLoops to take for

n of 200007 T(ﬂ («: A %, C&)((\ (8& wr(n)% C y\ (('?C?ﬁt‘?-) C IQO(P{; lfg;ﬁ?{

s losec,
fre(, time "{ ’, K
e ﬁd -----) e Lectmé}Z Page 2

T (?é’m)@) C]3&2@ = L@%@g 200@”@ LM \{{]ﬂ?f“l@ﬁf) C)Me

~ Data Structures (CS 1520) Lecture 3 Name:

1. Draw the graph for sumLigt (O(n)) and somel, bp O@m*)\from the previous lecture.
Anleg

2
60 sce 7 7 e
i{ :"'ﬁf (7
£ S/ CﬁD A
£
50 sec / e
S
[} / /
.E 40 sec g
o
g
%‘: 30 sec
2
88
20 seo O (' @3 L
19 sec
LN | 1 l [|
10,000 20,000 30,000 40,000 50,080 60,000
n
2. Consider the followin sumSomeLlstItems functlon) 20 02y
g 2.
Vu«\f"
A l(ﬁf € °
import time ng l“{ (XN ! ! t
25 Tk 2 2 A
def main(): Lara s 3. x
n = eval {(input ("Enter size of llSt ")) ;i
aList = list{range{l, n+1)}
start = time.clock()
sum = sumScomelListItems{alist)
end = time.clock(}
print ("Time to sum the list was %.9f seconds" % {end- start))
0
def sumSomeLisgtItems (myList):
"rReturng the sum of some items in myLlst"'”'59'2~LiJﬁ ’1“
total = 0
index = len{myList) - 1 lﬁﬂ&ﬁf V\ Pﬁ V\ Vq rﬂ glf l
while index > 0: —_ ———— ot ‘i_\ A ?. ’ v iy
total = total + myList [index] L ég
index = index // 2 @:‘x‘%{(2.
return total ' !
main{) 1031 (\ ‘ I\P"F /\

a) What is the problem size of sumSomeListItems? /0/\774 V"‘L\,/l()“f]

b) If we input n of 1 0,000 and sumSomeListItems takes [0 seconds, how long would you expect
sumSomeListItems to take for n of 20,0007

(Hint: For n of 20,000, how ma (v more times would the loop execute than for n of 10,0007)

21dl g, N) n)w C 1031,_ ‘T(w@”)ﬁ C Z.&a}g_.@cfwa

T = T
10000) C__ 0)@c)c;)@ 105ec lu%!oaoo
c) What is the big-oh notatl(g'l" for sumééﬁlé}ﬂl tItems‘? @ C Qa 2) IO Sec¢ [¢
- t
d) Add the exceution-time glaph~fo1 sumSomeListItems to the graph. ! 3 kx ¥

log, 2000

l&ﬁ%x o / ,Liimx ‘ Lecture 3 Page 1

[2er 102

Data Structures (CS 1520) Lecture3 Name:

Vi
31. =1 /(;36234 {D & } Execution flow
while i <= n: f‘z}{ c,ilf’f f“i?m 1= i=n
for J ip.range(n) ¥ _ y’f% NN
somethlng of O(o e
end for T
4 en diw}jiie* 2 ' loops n times loops n times loops n times

a) Anglyze the aboy: algorithm to determir)e its big-oh-notation, O().

[a(j,g’* X v@(ﬁ Qg 41

b) Ifn of 10,000, takes 10 seconds, how long would you expect the above code to take for n of 20,0007
¢ \{\\ &4‘/{* - M “f!{bﬂ 9 e 26 .]
ﬁ ff’ & PN T(‘E i w&) = 2oeac? [‘;3‘74; 20000
A

T(&):’: c. g 10‘71“

'#Tm(f@@ﬂ}(j) e /O@ 0 /05 v /5«96}6*’6? tf/(j_;??d

- [0se ¢ —

C = Thgae ies e
c) Add the execution-time graph for ‘rhe above code to the graph. 3’
4, Most programming langnages have a built-in array data structure to store a collection of séi;mei type items.
Arrays are implemented in RAM memory as a contiguous block of memory locations. Consider an array X that
contains the odd mtege%)

.

' O)zm {QLWW

— 1O0%ec K2 A

‘=.,_4~—-

= ‘(f Ry
address \/Iemory }';) Any array element can be accessed randomly by calculating its address. For
4000 1 X[01&] ‘example, address of X[5] = 4000 +.5 * 4 = 4020. What is the general formuia for -
4004 3 X[1] calcula’ung the address of the 1th efement m an anay‘? { -
4008 s ox | LAl v ,j ?;ar ,,»W N L/ flesent
4012 7 X[3] AR ‘}{i AL A Ak Sl
- 4016 9 X[4] o
4020 11 X[5]% '
4024 3 X[6] |b} Whatis the big-oh notation for accessing the ith element?
. ' R L)
@ C () Cong Jan t time

¢) A Python list uses an array of references (pomtels) to list items in their implementation of a list. For example, a
list of strings containing the aiphabet

0 1 2 3 (?} (len()-lz/ ﬁ;%w’aw{ *M'l‘f Lawid to
i i i 1 i - éﬁﬁy SIg0 ;,}»?m/a Jm,f“
lal 1b: 1Ct = mw !Zr

Since a Python list can contain hetelo geneous data, how does storing references in the list aid implementation?

j)(f ((q H@%f “Q} & é@@m’m\; ij»B"‘I,fi’ r’?(‘/**s Ie |
!J\/ fé‘iéﬁﬁ(i X WI‘M’\ he‘!@"ﬁq@ﬂé’()&’ﬁ (,,:,;g "? Lecture 3 Page 2

- Data Structures (CS 1520) Lecture 3 Name:

5. Arrays in most HLLs are static in size (i.e., cannot grow at run-time), so arrays are constructed to hold the
““maximum” number of items. For example, an array with 1,000 slots might only contain 3 items:

0 I 2,3 999
scores:1 20110 Iﬁ@/

[N S N

a) The physical size of the array is the number of slots in the array, What is the physical size of scores? [O(:)(f)

size: | 3

- b) The Iogzca] size, of f fhe array is the number of items actually in the array. What is the logical size of scores? /3

- ¢) The load factor is factlon of the array being used. Whait is the load factor of scores? 3

d) What is the O() for “appending” a new score to the *right end” of the array? (00w

@({)

¢) What is the O() for adding a new score to the “left end” of the array? CQ (A

f) What is the average O() for adding a new score to the array? D (,ﬂ) e O (A A1)
o fe e

g) During run-time if an array fills up and we want to add another item, the program can usually:
* Create a bigger array than the one that filled up
* Copy all the items from the old array to the bigger array
* Add the new item
* Delete the smaller atray to free up its memory
When crealing the bigger array, how much bigger than the old array should it be? JG&’ £ ﬂOA },; 5«(o /

- ANE.
h) What is the O() of moving to a larger array? O (A)

6. Consider the following list methods in Python:

M \/é(\? f = A l“‘?fe/’“’f Q"‘/‘!@#‘“ Zf e [:(éf’ﬁf}

Method Usage Average O() for myList containing n items
) itemValue = myList[i] O0)
index [] . ,_
: myList [i] = newValue D)
append myLigt.append (item) &) f’g)
wgxtend. - |myLhist.extend {(otherList) 2
insert myList,insert (i, item) ({D(’;}j) (f"l]
pop myList.pop{) A
pop(i) myList.pop (i) G 8l s ()
del del myList [i] (¢ . €
remove myList.remove (item) O ()
index myList.index (item) O A \
iteration for item in myList: @E’fﬂ
reverse myList.reverse({) O (2
Dictionary Operations:
Method Usage Explanation Average O() for n keys
. myDictionary.get (myKey) Returns the value associated with
getitem | g6 - myDictionary [myKeyl myKey; otherwise None (1)
setifem | myDictionary [myKey] =value Change or add myKey:value pair O(1)
in myKey in myDictionary Retm"ns_ True if myKey 1s 1n o)
myDictionary; otherwise False
del | del myDictionary [myKeyl Deletes the mykey:value pair o(1)

Lecture 3 Page 3

