Data Structures (CS 1520) Lecture 6 Name:

A Deque (pronounced “Deck™) is a linear data structure which behaves like a double-ended queue, i.e., it allows adding
or removing items from either the front or the rear of the Deque.

addRear(newltem) D addFront(newltem)
\» rear cque front /
removeRear () : removeFront()

1. One possible implementation of a Deque would be to use a Python list fo store the Deque items such that
* the rear ifem is always stored at index 0,
* the front item is always stored at the highest index (or -1)

Deque ObJ co [List Object class Deque (ob] ect)
P R 0 1 2 3 - B def init_ {self):
t“.‘lfems. l 'Eill bl e | d ﬁﬁ\l Y (9 f I { ems = E j
e “x\‘(rear) (front’),f"

a) Completethe init method and determine the big-oh, O (), for each Deque operation, assuming the above

implementation. Let n be the number of items in the Deque.
isEmpty addFront removeFront addRear removeRear gsize

O Y OV)T oCV) T oln) lotn) adl

b) Write the methods for the addReaxr and removeRear operation.

def addRear (self, newlItem): def removeRear (self): .
t AN e \

Qwat’{ff%f.m&ﬁf((?]ﬂfwz“f%) o M(Sc/f mex) wmed),

| faise E’x«,ﬂ/m(Comnatr.. V)

refhffm Se N, ;#Mr‘jgala (0)

2. An alternative implementation of a Deque would be a linked implementation as in:

LinkedDe ue bject
q OJ datasnext data next data next dai;a'r next class LinkedDeque(object):

,,Hrear: / . _ » K l'bl] o] 'd' def init_ (self):
““ T i) 4,“\5:.«’-:&’_‘-«:?\ S‘(}‘ﬁ . '/‘@f?t" 'f—: A/g’pqé

| = Se l{z, L'Prga"f' b N@—.’Qﬂeg
.. _size:
-\:_:_\e A Sell, Shhe =2

a) Cofnplete the " init__ method and determine the big-oh, O (), for each Deque operation assuming the above

linked implementation, Let n be the number of items in the Deque.
isEmpty addFront removeFront addRear removeRear size

Qalol 1) [oC AY[o(1) Joll) [od)

b) Suggest an improve{'nent ’T the 7bov linked i lementatlon of the Deq to speed up some of its operations,

e alced Nodler PRyl el ;/LQ/(
douh 1 C@»() { _,

pr—

Lecture 6 - Page 1

e

Data Structures {(CS 1520) - Lecture 6 Name:

from node import Node

clagss Node2Way (Node) :
def _ init_ (self,initdata}:
Node._ init__ {self, initdata)
self .previous = None

def getPrevious{self};
return self.previous

def setPreviocus(self, newprevious):
gelf . previous = newprevious

3. An alternative implementation of a Deque would be a doubly-linked implementation as in: @ '7(5{’
DoublyLml_ggc;lDeque Object IM/&
P —— . previous data next previous data next previous data next prev 8. data next
[/ _ear: ! v g Vg
{ v
3 o 2
&)
retazzg o) ¢
a) Determine the big-oh, O (), for each Deque operation assuming the above doubly—lmked mlplementatmn Letn be
the number of items in the Deque. f,fw“‘*"“’“"‘\ .
isEmpty addFront ,/ removeFront addRear , removeRear size

ooy oa) /@a\ Lo VOq)

4. A priority gueue has the same operations asa I'eguiar queue, except the items ateNQOT _1‘§31;u1‘n'c‘i'ér in the FIFO
(first-in, first-out) order. Instead, each item has a proirity that determines the order they are removed. A hospital
emergence room operates like a priority queue -- the person with the most serious injure has highest priority even if
they just arrived.

a) Suppose that we have a priority queue with integer priorities such that the smallest integer corresponds to the
highest priority. For the following priority queue, which item would be dequeued next?

28
e pet 2@,

P

.o :;;‘p 6 } 4
bocaoss AFSES oy, y
b) To implement a priority queue, we could use an unorder Python list. If we did, what would be the big-oh notatlon rd
for each of the followzj methods (justity your answe1)

* enqueue: {, { /ﬂ/aﬂy 7‘5) f/‘f 4718{“5@ w'(w/fgﬁ
+ dequeue: rgé)l({?a (_" §‘Hw7q ? /3 b (?(ﬁ’l)

s,

¢) To implement a priority quetie; we could use 2 I’ython list order-by priorities in decehding order. If we did, what
would be the big-oh notation for each of-the following methods (]ustlfy your answer) S@é ,(,{, A f?»‘l?uéh ¢
[/

t*’m 3@9 s g ovienl
. >~ .,___;—_M&\ J@(’iﬁ@q >g‘” >@(ﬂ)

@ ﬂ Je\éw"f

Z 70&118 6- Page?2

priority queue:

* enqueue:

dequeue

OU)

Né)/“’”"’? - (6 5¢ V\ept1abt Epont i),eé,gf \

@ “f“f’ﬁ'? fy e T _P J)Vgﬂ%
se[@ Pw:m% = Sel ‘ﬂ ﬂfm‘f ﬁgfﬂ%*zx:yu;g)

O el S, setMort (Wne T (0200 =2)

w2t
@ % Lp:,&ﬁfg--g -= | \\Mgsﬁg é

pn

‘P“ s’el"{« ~§ide = O,
Ha)'se fxffm/f& N)

gpg(.ﬁ/ Gfey
et ot A oy fit
(Z) | ,OW(W@Z:“/“/% ~ M/%V @gf{}“

Data Structures (CS 1520) Lecture 7 Name:
1. Section 6.6 discusses a very “non-intuitive”, but powerful list/array-based approach to implement a priority queue,
call a binary heap. The list/array is used to store a complete binary tree (a full tree with any additional leaves as far left
as possible) with the items being arranges by heap-order property, i.c., each node is < cither of its children. An
example of a min heap “viewed” an a complete binary tre}:\ wor%}ﬁld be:

gy

o [1]

3]

[5) 6] (71
) ()

[10]

0 1 2 3 4 5 6 7 8 9 1

Python List actually used
to store heap items ﬁ% 6 |15 |10 (114120 {20 |30 {300 125 | 117

a) For the above heap, the list/array indexes are indicated in [J's. For a node at index /, what is the index of:
o its left child ifit exists: 7 M4

* itsright child if it exists: 2 yp 4 = |

* its parent if it exists: j, W ol

b) What would the above heap look like after inserting 13 and then 37 (show the changes on above tree)

General Idea of insert(newltem):
* append newltem to the end of the list (casy to do, but violates heap-order property)
* restore the heap-order property by repeatedly swapping the newltem with its parent until it percolates to correct spot

¢) What is the big-oh notation for inserting a new item in the heap?

d) Complete the code for the percUp method used by insert.

class BinHeap:
def _ init {self):
self . heapLigst = [0)
self.currentSize = 0

def percUp{self,currentIndex}:
parentIndex =
while

def insert(self,k):
self, heapList.append (k)
self.current8ize = self.currentS8ize + 1
self.percUpi{self.currentSize)

Lecture 7 - Page |

