Data Structures (CS 1520) Lecture 6 Name:

A Deque (pronounced “Deck™) is a linear data structure which behaves like a double-ended queue, i.e., it allows adding
or removing items from either the front or the rear of the Deque.

addRear(newltem) D addFront(newltem)
\» rear cque front /
removeRear () : removeFront( )

1. One possible implementation of a Deque would be to use a Python list fo store the Deque items such that
* the rear ifem is always stored at index 0,
* the front item is always stored at the highest index (or -1)

Deque ObJ co [ List Object class Deque (ob] ect)
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a) Completethe init  method and determine the big-oh, O (), for each Deque operation, assuming the above

implementation. Let n be the number of items in the Deque.
isEmpty addFront removeFront addRear removeRear gsize
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b) Write the methods for the addReaxr and removeRear operation.

def addRear (self, newlItem): def removeRear (self): .
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2. An alternative implementation of a Deque would be a linked implementation as in:

LinkedDe ue bject
q OJ datasnext  data next  data next dai;a'r next class LinkedDeque(object):
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a) Cofnplete the " init__ method and determine the big-oh, O (), for each Deque operation assuming the above

linked implementation, Let n be the number of items in the Deque.
isEmpty addFront removeFront addRear removeRear size
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b) Suggest an improve{'nent ’T the 7bov linked i lementatlon of the Deq to speed up some of its operations,
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from node import Node

clagss Node2Way (Node) :
def _ init_ (self,initdata}:
Node._ init__ {self, initdata)
self .previous = None

def getPrevious{self};
return self.previous

def setPreviocus(self, newprevious):
gelf . previous = newprevious

3. An alternative implementation of a Deque would be a doubly-linked implementation as in: @ '7(5{’
DoublyLml_ggc;lDeque Object IM/&
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a) Determine the big-oh, O (), for each Deque operation assuming the above doubly—lmked mlplementatmn Letn be
the number of items in the Deque. f,fw“‘*"“’“"‘\ .
isEmpty addFront ,/ removeFront addRear , removeRear size
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4. A priority gueue has the same operations asa I'eguiar queue, except the items ateNQOT _1‘§31;u1‘n'c‘i'ér in the FIFO
(first-in, first-out) order. Instead, each item has a proirity that determines the order they are removed. A hospital
emergence room operates like a priority queue -- the person with the most serious injure has highest priority even if
they just arrived.

a) Suppose that we have a priority queue with integer priorities such that the smallest integer corresponds to the
highest priority. For the following priority queue, which item would be dequeued next?
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b) To implement a priority queue, we could use an unorder Python list. If we did, what would be the big-oh notatlon rd
for each of the followzj methods (justity your answe1)

*  enqueue: {, { /ﬂ/aﬂy 7‘5) f/‘f 4718{“5@ w'(w/fgﬁ
+ dequeue: rgé)l({?a ( _" §‘Hw7q ? /3 b (?(ﬁ’l)
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¢) To implement a priority quetie; we could use 2 I’ython list order-by priorities in decehding order. If we did, what
would be the big-oh notation for each of-the following methods (]ustlfy your answer) S@é ,(,{, A f?»‘l?uéh ¢
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priority queue:

*  enqueue:

dequeue
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1. Section 6.6 discusses a very “non-intuitive”, but powerful list/array-based approach to implement a priority queue,
call a binary heap. The list/array is used to store a complete binary tree (a full tree with any additional leaves as far left
as possible) with the items being arranges by heap-order property, i.c., each node is < cither of its children. An
example of a min heap “viewed” an a complete binary tre}:\ wor%}ﬁld be:
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Python List actually used
to store heap items ﬁ% 6 |15 |10 (114120 {20 |30 {300 125 | 117

a) For the above heap, the list/array indexes are indicated in [ J's. For a node at index /, what is the index of:
o its left child ifit exists: 7 M4

* itsright child if it exists: 2 yp 4 = |

* its parent if it exists: j, W ol

b) What would the above heap look like after inserting 13 and then 37 (show the changes on above tree)

General Idea of insert(newltem):
* append newltem to the end of the list (casy to do, but violates heap-order property)
* restore the heap-order property by repeatedly swapping the newltem with its parent until it percolates to correct spot

¢) What is the big-oh notation for inserting a new item in the heap?

d) Complete the code for the percUp method used by insert.

class BinHeap:
def _ init  {self):
self . heapLigst = [0)
self.currentSize = 0

def percUp{self,currentIndex}:
parentIndex =
while

def insert(self,k):
self, heapList.append (k)
self.current8ize = self.currentS8ize + 1
self.percUpi{self.currentSize)
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