
Question 1. (4 points) Consider the following Python code.

for i in range(n):

 j = 1

 while j < n:

 print (i, j)

 j = j + 2

What is the big-oh notation Ο () for this code segment in terms of n?

Question 2. (4 points) Consider the following Python code.

i = 1

while i < n:

 for j in range(n):

 print(j)

 for k in range(n):

 print(k)

 i = i * 2

What is the big-oh notation Ο () for this code segment in terms of n?

Question 3. (4 points) Consider the following Python code.

def main(n):

 for i in range(n):

 doSomething(n)

 doMore(n)

def doSomething(n):

 for k in range(2**n):

 print(k)

def doMore(n):

 for k in range(n):

 print(k)

main(n)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 4. (8 points) Suppose a Ο (n4) algorithm takes 1 second when n = 100. How long would you expect the

algorithm to run when n = 1,000?

Question 5. (5 points) In lab 2 (and on the Python Summary) the AdvancedDie class inherited from the Die class.

How does inheritance aid a programmer in writing code?

Fall 2014 Data Structures - Test 1 Name: ______________________

1

Question 6. A priority queue has the same operations as a regular queue, except the items are NOT returned in the

FIFO (first-in, first-out) order. Instead, each item has a proirity that determines the order they are removed.

One possible implementation of a priority queue would be to use a built-in Python list to store the items such that

� items in the Python list are unordered by their priorities,

� lowest number indicates the highest priority (i.e., dequeuing from the below priority queue would return 5)

 8 5 15 10

0 1 2 3

 _items:

Python List ObjectPriorityQueue Object

a) (5 points) Complete the big-oh O (), for each PriorityQueue operation, assuming the above implementation.

Let n be the number of items in the PriorityQueue.

size__str__dequeueenqueue(item)isEmpty

b) (15 points) Complete the method for the dequeue operation including the precondition check.

class PriorityQueue(object):

 def __init__(self):

 self._items = []

 def dequeue(self):

 """Removes and returns the highest priority (lowest value) item in the

 PriorityQueue

 Precondition: the PriorityQueue is not empty.

 Postcondition: the highest priority (lowest value) item in the PriorityQueue is

 removed and returned"""

c) (5 points) Suggest an alternate PriorityQueue implementation to speed up some of its operations.

Fall 2014 Data Structures - Test 1 Name: ______________________

2

Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a

complete binary tree (a full tree with any additional leaves as far left as possible) with the items being arranges by

heap-order property, i.e., each node is ≤ either of its children. An example of a min heap “viewed” as a complete

binary tree would be:

 4

 8 13

 75 30 5020

300 81 91 57 25

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [11][10] [12]

1 2 3 4 5 6 7 8 9 10 11 120

 not
used 4 8 13 75 30 20 25 50 300 81 57 91

Python List actually used
to store heap items

a) (3 points) For the above heap, the list indexes are indicated in []'s. For a node at index i, what is the index of:

� its left child if it exists:

� its right child if it exists:

� its parent if it exists:

b) (7 points) What would the above heap look like after inserting 12 and then 2 (show the changes on above tree)

c) (3 points) What is the big-oh notation for inserting a new item in the heap?

Now consider the delMin operation that removes and returns the minimum item.

 4

 8 13

 75 30 5020

300 81 91 57 25

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [11][10] [12]

1 2 3 4 5 6 7 8 9 10 11 120

 not
used 4 8 13 75 30 20 25 50 300 81 57 91

Python List actually used
to store heap items

d) (2 point) What item would delMin remove and return from the above heap?

e) (7 points) What would the above heap look like after delMin? (show the changes on above tree)

f) (3 points) Why does a delMin operation typically take longer than an insert operation?

Fall 2014 Data Structures - Test 1 Name: ______________________

3

Question 8. The textbook’s Ordered list ADT uses a singly-linked list implementation. I added the _size and

_tail attributes:

data next data next data next data next

_head

 _tail

_size 4

0 21 3

'd' 'h' 'm' 't'

 OrderedList Object

a) (15 points) The index(item) method returns the position of the item in the list (e.g., ‘m’ is at position 2).

Recall that the textbook’s implementation, assumes the item is in the list!!! Thus, the precondition is that item is

in the list. Complete the index(item) method code including the precondition check.

b) (10 points) Assuming the ordered list ADT described above does not allows duplicate items. Complete the

big-oh O () for each operation. Let n be the number of items in the list.

index(item)

 returns the position of

item in the list

remove(item)

removes the item

from the list

length()

returns number of items in

the list

pop()

removes and returns

tail item

add(item)

adds the item into the

list

Fall 2014 Data Structures - Test 1 Name: ______________________

4

class OrderedList(object):

 def __init__(self):

 self._head = None

 self._size = 0

 self._tail = None

 def index(self, item):

class Node:

 def __init__(self, initdata):

 self.data = initdata

 self.next = None

 def getData(self):

 return self.data

 def getNext(self):

 return self.next

 def setData(self, newdata):

 self.data = newdata

 def setNext(self, newnext):

 self.next = newnext

