
Question 1. (4 points) Consider the following Python code.

for i in range(n):
 j = 1
 while j < n:
 for k in range(n):
 print(i, j, k)
 j = j * 2

What is the big-oh notation Ο () for this code segment in terms of n?

Question 2. (4 points) Consider the following Python code.

for i in range(n):

 for j in range(n):

 print(j)

 k = n

 while k > 0:

 print(k)

 k = k // 2

What is the big-oh notation Ο () for this code segment in terms of n?

Question 3. (4 points) Consider the following Python code.

def main(n):

 for i in range(n):

 doSomething(n)

 doMore(n)

def doSomething(n):

 for k in range(n):

 print(k)

def doMore(n):

 for j in range(n * n * n):

 print(j)

main(n)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 4. (8 points) Suppose a Ο (n4) algorithm takes 10 second when n = 100. How long would you expect

the algorithm to run when n = 1,000?

Question 5. (10 points) Why should you design a program instead of “jumping in” and start by writing code?

Fall 2015 Data Structures - Test 1 Name: ______________________

1

Question 6. Consider the following Stack implementation utilizing a Python list:

a

b

c

top

top

bottombottom

 Stack

 "Abstract"

 items:

 Stack Object Python list Object

c b a

0 1 2

a) (6 points) Complete the big-oh notation for the Stack methods assuming the above implementation: ("n" is the #

items)

Big-oh

__str__isEmpty() size()peek()pop()push(item)

b) (9 points) Complete the code for the pop method including the precondition check.

class Stack:

 def __init__(self):
 self._items = []

 def pop(self):

 """Removes and returns the top item of the stack

 Precondition: the stack is not empty.

 Postcondition: the top item is removed from the stack and returned"""

c) (5 points) Suggest an alternate Stack implementation to speed up some of its operations.

Fall 2015 Data Structures - Test 1 Name: ______________________

2

Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a

complete binary tree (a full tree with any additional leaves as far left as possible) with the items being arranges by

heap-order property, i.e., each node is ≤ either of its children. An example of a min heap “viewed” as a complete

binary tree would be:

 7

12 31

 7530 10040

100 94 91 88 45

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [11][10] [12]

1 2 3 4 5 6 7 8 9 10 11 120

 not
used 7 12 31 30 75 40 45 100 100 94 88 91

Python List actually used
to store heap items

a) (3 points) For the above heap, the list indexes are indicated in []'s. For a node at index i, what is the index of:

� its left child if it exists:

� its right child if it exists:

� its parent if it exists:

b) (7 points) What would the above heap look like after inserting 18 and then 9 (show the changes on above tree)

Now consider the delMin operation that removes and returns the minimum item.

 7

12 31

 7530 10040

100 94 91 88 45

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [11][10] [12]

1 2 3 4 5 6 7 8 9 10 11 120

 not
used 7 12 31 30 75 40 45 100 100 94 88 91

Python List actually used
to store heap items

c) (2 point) What item would delMin remove and return from the above heap?

d) (7 points) What would the above heap look like after delMin? (show the changes on above tree)

e) (6 points) What is the big-oh notation for the delMin operation? (EXPLAIN YOUR ANSWER)

Fall 2015 Data Structures - Test 1 Name: ______________________

3

Question 8. The Node class (in node.py) is used to dynamically create storage for a new item added to the

stack. Consider the following LinkedQueue class using this Node class. Conceptually, a LinkedQueue object

would look like:

 "Abstract Queue"

 _front:

 _rear:

 _size:

3

 data data data next next next

'w' 'x' 'y'

LinkedQueue Object

Node Objects

'w' 'x' 'y'

front rear

a) (13 points) Complete the dequeue method including the precondition check.

b) (7 points) Assuming the queue ADT described above. Complete the big-oh O () for each queue operation. Let

n be the number of items in the queue.

__str__()size()dequeue()enqueue(item)__init__

c) (5 points) Would using doubly-linked nodes (i.e., Node2way) speed up some of the queue operations? Justify

your answer.

Fall 2015 Data Structures - Test 1 Name: ______________________

4

class LinkedQueue(object):

 """ Linked-list based queue implementation."""

 def __init__(self):

 self._front = None

 self._size = 0

 self._rear = None

 def dequeue(self):

 """ Removes and returns the front item in the queue.

 Precondition: the queue is not empty. """

class Node:

 def __init__(self,initdata):

 self.data = initdata

 self.next = None

 def getData(self):

 return self.data

 def getNext(self):

 return self.next

 def setData(self,newdata):

 self.data = newdata

 def setNext(self,newnext):

 self.next = newnext

