
Question 1. (4 points) Consider the following Python code.

for i in range(n * n * n):

 j = 1

 while j < n:

 print(i, j)

 j = j * 2

What is the big-oh notation Ο () for this code segment in terms of n?

Question 2. (4 points) Consider the following Python code.

for i in range(n):

 j = n
 while j > 1:
 print(i, j)
 j = j // 2

 for k in range(n):

 print(k)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 3. (4 points) Consider the following Python code.

def main(n):

 for i in range(n):

 doSomething(n)

 doMore(n*n*n)

def doSomething(n):

 for k in range(n):

 print(k)

def doMore(n):

 for j in range(n):

 print(j)

main(n)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 4. (8 points) Suppose a Ο (n5) algorithm takes 10 second when n = 100. How long would the algorithm

run when n = 1,000?

Question 5. (10 points) For a built-in Python list, explain each of the following average big-oh notations:

a) Why does myList.insert(0, “item”)have an average big-oh of O(n), where n is the # of list items?

b) Why does myList.append(“item”)have an average big-oh of O(1), where n is the # of list items?

Fall 2016 Data Structures - Test 1 Name: ______________________

1

Question 6. A FIFO queue allows adding a new item at the rear using an enqueue operation, and removing an item

from the front using a dequeue operation. One possible implementation of a queue would be to use a built-in

Python list to store the queue items such that

� the front item is always stored at index 0,

� the rear item is always at index len(self._items) -1 or -1

 'a' 'b' 'c' 'd'

0 1 2 3

 _items:

Python List Object

rear

Queue Object

front

a) (6 points) Complete the big-oh O (), for each Queue operation, assuming the above implementation. Let n be

the number of items in the queue.

size__str__peek - returns front item

without removing it

dequeueenqueue(item)isEmpty

b) (9 points) Complete the method for the dequeue operation, including the precondition check to raise an

exception if it is violated.

 def dequeue(self):

 """Removes and returns the Front item of the Queue

 Precondition: the Queue is not empty.

 Postcondition: Front item is removed from the Queue and returned"""

c) (5 points) An alternate Queue implementation would swap the location of the front and rear items as in:

Why is this alternate implementation probably not very helpful

with respect to the Queue’s performance?

Fall 2016 Data Structures - Test 1 Name: ______________________

2

 'd' 'c' 'b' 'a'

0 1 2 3

 _items:

Python List Object

rear

Queue Object

front

Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a

complete binary tree (a full tree with any additional leaves as far left as possible) with the items being arranges by

heap-order property, i.e., each node is ≤ either of its children. An example of a min heap “viewed” as a complete

binary tree would be:

 9

23 15

 25 34 3040

120 44 42

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

1 2 3 4 5 6 7 8 9 100

 not
used 9 23 15 25 34 40 30 120 44 42

Python List actually used
to store heap items

a) (3 points) For the above heap, the list indexes are indicated in []'s. For a node at index i, what is the index of:

� its left child if it exists:

� its right child if it exists:

� its parent if it exists:

b) (7 points) What would the above heap look like after inserting 5 and then 3 (show the changes on above tree)

Now consider the delMin operation that removes and returns the minimum item.

 9

23 15

 25 34 3040

120 44 42

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

c) (2 point) What item would delMin remove and return from the above heap?

d) (7 points) What would the above heap look like after a delMin operation? (show the changes on above tree)

e) (6 points) Performing 20,000 inserts into an initially empty binary heap takes 0.23 seconds. Now, if we

perform 20,000 delMin operations, it takes 0.39 seconds. Explain why these 20,000 delMin operations take

more time than the 20,000 insert operations?

Fall 2016 Data Structures - Test 1 Name: ______________________

3

Question 8. The Node class can be used to dynamically create storage for each new item added to a Queue using a

singly-linked implementation as in:

LinkedQueue Object

_front:

_rear:

 _size: 4
data next data next data next data next

 'd' 'c' 'b' 'a'

Node Objects

a) (6 points) Determine the big-oh, O (), for each LinkedQueue operation assuming the above singly-linked

implementation. Let n be the number of items in the queue.

size__str__peek - returns front item

without removing it

dequeueenqueue(item)isEmpty

b) (14 points) Complete the enqueue method for the above LinkedQueue implementation.

c) (5 points) Suggest an improvement to the above implementation to speed up some of the queue operations

enough to change their big-oh notation? Justify your answer

Fall 2016 Data Structures - Test 1 Name: ______________________

4

class LinkedQueue(object):

 """ Singly-linked list based Queue implementation."""

 def __init__(self):

 self._size = 0

 self._rear = None

 self._front = None

 def enqueue(self, newItem):

 """ Adds the newItem to the rear of the queue.

 Precondition: none """

.

class Node:

 def __init__(self,initdata):

 self.data = initdata

 self.next = None

 def getData(self):

 return self.data

 def getNext(self):

 return self.next

 def setData(self,newdata):

 self.data = newdata

 def setNext(self,newnext):

 self.next = newnext

