Fall 2017 Data Structures - Test 1 Name: {] "/g anyr /v::’ -,

Question 1. (4 points) Consider the following Python code.
for i in range(n): 2
for j in range({n): l/"
print{i, j)
for k in range(n}:
print(k) _ 2 “C‘hg}
What is the big-oh notation O () for this code segment in terms of n?

Question 2. (4 points) Consider the following Python code.

for i in range(n):
i=n

while § > 0: - ? /
for kX in range(n}: ;]
print(i, 3, k) (9 V\ (Qﬁ) 5 A
§ =g /2 e i

What is the big-oh notation O () for this code segment in terms of n? p §
’ L ‘%ngagﬂ;)
Question 3. (4 points) Consider the following Python code.

def main{n):

for i in range(a): = I
doSomething {n) ~at

doMore{n) -p’? ‘ ff L(
def doSomething(n):) ; \/\' "
for k in range(n): -~ '

doMore (n} . p°
print (k)

v
I

def dobMorein):
for j in range({n*n}:
print(j)

main {n)

What is the big-oh notation O () for this code segment in terms of n? +3 % 3)

Question 4. (8 points) Suppose a O (n*) algorithm takes 10 second when n = 1000. How long would the

algorithm run when n = 10,0007 B K 16
e . L{ “l(’ @,gc)g) oL Itg > - C., / o
‘ (!/ \) R 4 - Jmf ‘e o 73

Y
T (lOOQ) - ¢ [000 = I@j‘g’@ [0
0 sec ! O 1 e | =[O sec

1000~ 10" 10" = 100,000 soc

Question 5. (10 points) Why should you design a program instead of “jumping in” and start by writing code?

. \N t ‘%"L\ow'f jds,ya !\&j) 'F;{.ﬂq,?l. Vou N | é?@ " V"\‘%"‘/‘j (’«9/6’]l/,q /

Vou' ' a,mﬁ To M(}f{”py or Tg__,_!i]mw ALty (g‘{p . ac
Vow wo N w{\%f%gﬁt@(|

g

A

Fall 2017 Data Structures - Test 1 Name:

Question 6. A FIFO (First-In-First-Out) queue allows adding a new item at the rear using an enqueue operation,
and removing an item from the front using a dequeue operation. One possible implementation of a queue would be
to use a built-in Python list to store the queue items such that

* the rear item is always stored at index 0,

» the front item is always at index len(self. _items) -1, or -1

Python List Object
Queue Object

a) (6 points) Complete the big-oh O (), for each Queue operation, assuming the above implementation, Let n be
the number of items in the gueue.

isEmpty encgueue (item) dequeue' peek -returns front item _ str size
without removing it

o | 0wy [0 | ol) O(n) | O®)

b) (9 points) Complete the method for the dequeue operation, including the precondition check to raise an
exception if it is violated.

def dequeue(self):
"""Removes and returns the Front item of the Queue
Precondition: the Queue is not empty.
Postcondition: Front item is removed from the Queue and returned"™”

14 '% ’Q“\(Sa“&wﬂmﬂxﬁ :

caige Valie Eecsr (* Conagt dequoue Tom cotly

Gueéte “)

6 (re Curn sléHj-wH"@MS“. pof ()

c) (5 points) An alternate Queue implementation would swap the location of the front and rear items as in:

Python List Object

Why is this alternate implementation probably not very helpful
with respect to the Queue’s performance?

M@k-ef O(I) for en ueqé blﬂlﬁ quee
0)0@! 'Pf’“aﬂ"‘\ O(f) +ui(9@\)j, %&? e

Queue Object

Fall 2017 Pata Structures - Test 1 Name:

Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a
complete binary free (a full tree with any additional leaves as far left as possible) with the items being arranges by
heap-order property, i.e., each node is < either of its children. An example of a min heap “viewed” as a complete

7
%-74 — o

binary tree would be:

Python List actually used
to store heap items- % 8 15112 135 (24 {40 | 30 | 100

a) (7 points) What would the above heap look like after inserting 10 and then 7 (show the changes on above tree)

Now consider the de1Min operation that removes and returns the minimum item. /

b) (2 point) What item would de 1Min remove and return from the above heap? ("5
¢) (7 points) What would the above heap look like after a de1Min operation? (show the changes on above tree)

d) (3 points) What is the big-oh notationjor both of the insext and de1Min operations, where n is the number
of items in the heap? i l) n P

3y O C‘)é)?fﬂ /\g) V/\‘(/\ -&f.@,‘ M‘“{*‘?‘f’fr +7 w?&?@,@)
int

e) (6 points) Performing 20,000 insertsfinto an initially empty binary heap takes 0.23 seconds. Now, if we
perform 20,000 delMin operations, it takes 0.39 seconds. Explain why 20,000 de1Min operations take more

time than the 20,000 insert operations?

M mepAed e gladr a5« leat and percolates o &

a !:N‘MCZ‘ o '!/!'m' tree b}/ Com /f)ftw'ﬂ? with s
Pareat, A A)@(é\%\elﬂ Cadse 4/1'\@ Iy o4 e do move o '(Zlc“

v‘*@o%’ éiawg ;i)ejj&)l&z“{‘c‘-f cﬂo;\m\ éé,oL IW@/(éJ\ (‘o:f&\paﬁﬂ? ;"'LS e

5 cheldren and then Lbﬂﬂpar;nﬁ!wi‘% fl/\@ SM,@HQ, Cl’lé J Del A

fetss o (ompacifen o Mot 5,5’:5;%@1 éa g&sfg(whyle 1A {er gq[y Needs @ae,

Fall 2017 Data Structures - Test 1

Name:

Question 8. The Node2way and Node classes can be used to dynamically create storage for each new item added to

a Deque using a doubly-linked implementation as in:

DoublyLinkedDeque Object

previous data next previous data next

”/m
previous datwléext

previous data next

~ front: gt 1 ’c’ /{5 (d\
rear:| \ j@ /" (j))
" ' ' : m >
_size: ?4}\5 { 5/)@({ (([s@ ‘\ ’{\hﬂrgng 2,{{\» Ve r e Z‘ el

Ve mﬁ?b’ !\’*» L{S’f Feud,

w5122,

a) (6 points) Complete the big-oh O (), for each DounyLmkedDeque opelat ozf”zséuming the above
implementation. Let n be the number of items in the DoublyLinkedDeque.

isEmpty addR\ear removeRear

addFront

removelront

0(()

o(() o(1)

a

o0) (3— Ca)—

b) (14 points) Complete the removeRear method for the above DoublyLinkedDeque implementation.

class DoublyLinkedDegue {object):
""" Doubly-linked list based deque implementation.""¥

def init (self):
self. front = None -
self. rear = None
self. size = 0

def removeRear{self):

" PRemoves and returns the rear item of the Degue
Preconditien: the Deque is not empty.
Postcondition: Rear item is removed from the Degue

and returned, """

F 56’(’?# wsr (3(%@ e é") :

class Node:

def init (self,initdata):
self.data = initdata
self.next = None

def getData({self):

return self.data
def getNext(self):
return self.next
def setData(self,newdata):
self.data = newdata
def setNext{self, newnext}:
self.next newnext

Vaise Vﬂ{m ﬁmm{ (tnavl vemore Rear Jrom (?mjf;,!»/ Deg et 'f)

ue PR , :
Mfsaff s Jj spel

De} C, f‘{({}t"\”’} a"é}fl@x
«%c;f FU ey 1opy) sel N@ﬁ{g\!@qé>

= Qrfiid o;e/ p»“cwbuxc

%’ %i{m
&
5@(*/” fe,a

'S

i

from node import Node

class Node2Way(Node):
def init__ (self,initdata):
Node, lnlt (self, initdata)
self, prev1ous = None
def geftPrevious(self):
return self.previous
def setPrevicus{self,newprevious}:
self,.previous = newprevious

£ 502
L% W/‘ %&/ﬁ{) O\éf mfﬁr(j)

- ¢) (5 peints) Why would using singly- hnked nodes (i.e., only Node objects with data and next) to implement the
Deque lead to poor performance (i.e., cause some Deque operations to have worse big-oh notatlons)‘? Justify your

answer. u Se

0 (n)

23

((\\7131 {(k(ef Q(e’(/é)f W;Nj (dyv0 VWnowe ’QUV\ "{o l’l@i/é«

