
Question 1. (4 points) Consider the following Python code.

i = n
while i > 1:
 for j in range(n):
 for k in range(n * n):
 print(i, j, k)
 i = i // 2

What is the big-oh notation Ο () for this code segment in terms of n?

Question 2. (4 points) Consider the following Python code.

for i in range(n):

 for j in range(n):

 print(j)

 for k in range(n):

 print(k)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 3. (4 points) Consider the following Python code.

def main(n):

 for i in range(n):

 doSomething(n)

def doSomething(n):

 for k in range(n):

 doMore(n)

 print(k)

def doMore(n):

 for j in range(n):

 print(j)

main(n)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 4. (9 points) Suppose a Ο (n3) algorithm takes 10 second when n = 1000. How long would you expect

the algorithm to run when n = 10,000?

Question 5. (9 points) Why should any method/function having a "precondition" raise an exception if the

precondition is violated?

Spring 2015 Data Structures - Test 1 Name: ______________________

1

Question 6. A Deque (pronounced “Deck”) is a linear data structure which behaves like a double-ended queue, i.e.,

it allows adding or removing items from either the front or the rear of the Deque. One possible implementation of

a Deque would be to use a built-in Python list to store the Deque items such that

� the front item is always stored at index 0,

� the rear item is always at index len(self._items)-1 or -1

 'a' 'b' 'c' 'd'

0 1 2 3

 _items:

Python List Object

rear

Deque Object

front

a) (6 points) Complete the big-oh O (), for each Deque operation, assuming the above implementation. Let n be

the number of items in the Deque.

sizeremoveFrontaddFrontremoveRearaddRearisEmpty

b) (9 points) Complete the method for the removeRear operation including the precondition check.

 def removeRear(self):

 """Removes and returns the rear item of the Deque

 Precondition: the Deque is not empty.

 Postcondition: Rear item is removed from the Deque and returned"""

c) (5 points) Suggest an alternate Deque implementation to speed up some of its operations.

Spring 2015 Data Structures - Test 1 Name: ______________________

2

Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a

complete binary tree (a full tree with any additional leaves as far left as possible) with the items being arranges by

heap-order property, i.e., each node is ≤ either of its children. An example of a min heap “viewed” as a complete

binary tree would be:

 4

 8 13

 75 30 5020

300 81 57

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

1 2 3 4 5 6 7 8 9 100

 not
used 4 8 13 75 30 20 50 300 81 57

Python List actually used
to store heap items

a) (3 points) For the above heap, the list indexes are indicated in []'s. For a node at index i, what is the index of:

� its left child if it exists:

� its right child if it exists:

� its parent if it exists:

b) (7 points) What would the above heap look like after inserting 6 and then 2 (show the changes on above tree)

c) (3 points) What is the big-oh notation for inserting a new item in the heap?

Now consider the delMin operation that removes and returns the minimum item.

 4

 8 13

 75 30 5020

300 81 91 57 85

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [11][10] [12]

1 2 3 4 5 6 7 8 9 10 11 120

 not
used 4 8 13 75 30 20 85 50 300 81 57 91

Python List actually used
to store heap items

d) (2 point) What item would delMin remove and return from the above heap?

e) (7 points) What would the above heap look like after delMin? (show the changes on above tree)

f) (3 points) Why does a delMin operation typically take longer than an insert operation?

Spring 2015 Data Structures - Test 1 Name: ______________________

3

Question 8. The Node class (in node.py) is used to dynamically create storage for a new item added to the

stack. Consider the following LinkedStack class using this Node class. Conceptually, a LinkedStack object

would look like:

a

b

c top

bottom

 Stack

 "Abstract"

 _bottom:

 _top:

 _size:

3

'c''b''a'

LinkedStack Object Node Objects

 data data data next next next

None

a) (11 points) Complete the __str__ method above.

b) (7 points) Assuming the stack ADT described above. Complete the big-oh O () for each stack operation. Let

n be the number of items in the stack.

__str__()size()peek()pop()push(item)

c) (7 points) Suggest an alternate LinkedStack implementation to speed up some of its operations.

Spring 2015 Data Structures - Test 1 Name: ______________________

4

class LinkedStack(object):

 """ Link-based stack implementation."""

 def __init__(self):

 self._bottom = None

 self._size = 0

 self._top = None

 def __str__(self):

 """ Returns a string with items strung from bottom to

 top. Each item should be separated by a space. """

class Node:

 def __init__(self,initdata):

 self.data = initdata

 self.next = None

 def getData(self):

 return self.data

 def getNext(self):

 return self.next

 def setData(self,newdata):

 self.data = newdata

 def setNext(self,newnext):

 self.next = newnext

