
Data Structures - Test 2

Question 1. (5 points) What is printed by the following program?

def recFn(myString, index):
 if index >= len(myString):
 return ""
 else:
 return recFn(myString, index + 3) + myString[index]

print(recFn("Go panthers!", 0))

Question 2. (8 points) Write a recursive Python function to compute the following mathematical function, G(n):

G(0) value is 0

G(1) value is 1

G(2) value is 2

G(n) = G(n-3) + G(n-1) for all values of n > 2.
def G(n):

Question 3. (7 points) a) For the above recursive function G(n), complete the calling-tree for G(6).

G(6)

G(3) G(5)

b) What is the value of G(6)?

c) What is the maximum height of the run-time stack when calculating G(6) recursively?

Fall 2013 Name: ______________________

1

Question 4. (10 points.) Consider the following selection sort code which sorts in ascending order.

def selectionSort(aList):

 for lastUnsortedIndex in range(len(aList)-1, 0, -1):

 # look for maximum item in unsorted part of list

 # Assume maximum is the first item in the unsorted part

 maxIndex = 0

 # scan the unsorted part of the list to correct the assumption

 for testIndex in range(1, lastUnsortedIndex+1):

 if aList[testIndex] > aList[maxIndex]:

 maxIndex = testIndex

 # exchange the items at maxIndex and lastUnsortedIndex

 temp = aList[lastUnsortedIndex]

 aList[lastUnsortedIndex] = aList[maxIndex]

 aList[maxIndex] = temp

a) Let “n” be the number of items in the list. How many total comparisons does the if-statement perform in the

selection sort?

b) Let “n” be the number of items in the list. How many total item moves are performed in the selection sort?

Question 5. (25 points) Write a variation of bubble sort that:

� sorts in descending order (largest to smallest)

� builds the sorted part on the left-hand side of the list, i.e.,

Sorted Part Unsorted Part

Inner loop scans from right to left
across the unsorted part swapping
adjacent items that are "out of order"

(Your code does NOT need to stop early, i.e., if a scan of the unsorted part has no swaps)

def bubbleSort(myList):

Fall 2013 Name: ______________________

2

Question 6. (15 points) Recall the common rehashing strategies we discussed for open-address hashing:

Check the square of the attempt-number away for an available slot, i.e.,

[home address + ((rehash attempt #)2 +(rehash attempt #))/2] % (hash table size), where the hash table size

is a power of 2. Integer division is used above

quadratic

probing

Check next spot (counting circularly) for the first available slot, i.e.,

(home address + (rehash attempt #)) % (hash table size)

linear

probing

DescriptionStrategy

a) Insert “Paul Gray” and then “Kevin O’Kane” using Linear (on left) and Quadratic (on right) probing.

John DoeJohn Doe

hash(John Doe) = 6

Philip EastPhilip East

hash(Philip East) = 3

Mark FienupMark Fienup

hash(Mark Fienup) = 5

Ben SchaferBen Schafer

hash(Ben Schafer) = 0

hash(Paul Gray) = 3

hash(Kevin O'Kane) = 3

Hash functionHash Table with Linear Probing Hash Table with Quad. Probing

00

11

22

33

44

55

66

77

b) Indicate below if each rehashing strategy suffers from primary clustering and/or secondary clustering?

� linear probing

� quadratic probing

Question 7. (15 points) The general idea of Quick sort is as follows:

� Select a “random” item in the unsorted part as the pivot

� Rearrange (partitioning) the unsorted items such that:

� Quick sort the unsorted part to the left of the pivot

� Quick sort the unsorted part to the right of the pivot

Explain why the worst-case performance is O(n2).

Fall 2013 Name: ______________________

3

Pivot

Pivot Index

ItemAll items < to Pivot All items >= to Pivot

Question 8. (15 points) In class we discussed the 2-way merge sort below.

The general idea of 4-way merge sort is as follows. Assume “n” items to sort.

� Divide the unsorted part into quarters to get four smaller sorting problems of about equal size = n/4

� Conquer/Solve the smaller problems recursively using 4-way merge sort

� “Merge” the solution to the smaller problems together using two levels of merging

Unsorted size n

 Sorted size n

 Sorted size n/2 Sorted size n/2

unsorted n/4

 sorted n/4

unsorted n/4

 sorted n/4

unsorted n/4

 sorted n/4

unsorted n/4

 sorted n/4

Divide

Conquer

Merge two quartersMerge two quarters

Merge halves to

pairs into halvespairs into halves

get whole sorted array

recursively

Write the Python code for the 4-way merge sort. NOTE: Use the same merge code as used as in the 2-way

merger sort code given above. Just call the 2-way merge three times as shown in the above diagram to merge the

four quarters. You do not need to rewrite the merge code.

Fall 2013 Name: ______________________

4

10

10

10

10

20

20

20

20

35

35

35

35

40

40

40

40

45

45

45

45

60

60

60

60

25

25

25

25

50

50

50

50

Unsorted Part

 Sorted Part

Unsorted Left Half

 Sorted Left Half

Unsorted Right Half

 Sorted Right Half

0

0

0

0

0

0

4

4

1

1

1

1

1

1

5

5

2

2

2

2

2

2

6

6

3

3

3

3

3

3

7

7

def merge(alist, lefthalf, righthalf):

 i=j=k=0

 while i<len(lefthalf) and j<len(righthalf):

 if lefthalf[i]<righthalf[j]:

 alist[k]=lefthalf[i]

 i=i+1

 else:

 alist[k]=righthalf[j]

 j=j+1

 k=k+1

 while i<len(lefthalf):

 alist[k]=lefthalf[i]

 i=i+1

 k=k+1

 while j<len(righthalf):

 alist[k]=righthalf[j]

 j=j+1

 k=k+1

def mergeSort(alist):

 if len(alist)>1:

 mid = len(alist)//2

 lefthalf = alist[:mid]

 righthalf = alist[mid:]

 mergeSort(lefthalf)

 mergeSort(righthalf)

 merge(alist, lefthalf, righthalf)

