
Data Structures - Test 2

Question 1. (10 points) What is printed by the following program? Output:

def recFn(a, b):

 print(a, b)

 if a > b:

 return a

 elif a == b:

 return a + b

 else:

 return b + recFn(a + 1, b - 1) - a

print("Result = ", recFn(1, 7))

Question 2. (8 points) Write a recursive Python function to compute the following mathematical function, G(n):

G(n) = 1 for all value of n ≤ 0

G(n) = 2 for n = 1

G(n) = G(n-5) + G(n-4) + G(n-3) for all values of n > 1.
def G(n):

Question 3. (7 points) a) For the above recursive function G(n), complete the calling-tree for G(7).

G(7)

G(2) G(3) G(4)

b) What is the value of G(7)?

c) What is the maximum height of the run-time stack when calculating G(7) recursively?

Fall 2014 Name: ______________________

1

Run-time Stack

a:

b: 7

 1

call-fram
e

In
itial

o
f recF

n

Question 4. (10 points.) Consider the following timings of the recursive G(n) function from question 2.

2,430.46145.988.780.560.05Time to calculate G(n) in seconds

8070605040Value of n

a) Explain why the recursive G(n) function from question 2 is so slow.

b) Explain how we could speed up the calculation of G(n)? (no code is necessary just an explanation)

Question 5. (15 points) Consider the timings (in seconds) of various ascending, bubble sorting algorithms on

10,000 items.

16.30.00224.1bubble - with a check to stop early

15.97.723.2bubble - no check to stop early

Random orderAscendingDescending

Initial Ordering of ItemsType of bubble sorting algorithm

a) Why does the bubble sort with no check to stop early take less time on the ascending ordered list than it does on

the descending ordered list?

b) Why does the bubble sort with a check to stop early take A LOT less time on the ascending ordered list than the

descending ordered list?

c) Why does the bubble sort with no check to stop early take less time on the descending ordered list than the

bubble sort with a check to stop early on the descending ordered list?

Fall 2014 Name: ______________________

2

Question 6. (20 points) In class we discussed the following insertion sort code which sorts in ascending order

(smallest to largest) and builds the sorted part on the left-hand side of the list.

def insertionSort(myList):

 for firstUnsortedIndex in range(1,len(myList)):

 itemToInsert = myList[firstUnsortedIndex]

 testIndex = firstUnsortedIndex - 1

 while testIndex >= 0 and myList[testIndex] > itemToInsert:

 myList[testIndex+1] = myList[testIndex]

 testIndex = testIndex - 1

 myList[testIndex + 1] = itemToInsert

For this question write a variation of the above insert sort that:

� sorts in descending order (largest to smallest)

� builds the sorted part on the right-hand side of the list, i.e.,

Unsorted Part Sorted Part
item to
insert

scan sorted part
from left to right

def insertionSort(myList):

Fall 2014 Name: ______________________

3

Question 7. (15 points) Recall the common rehashing strategies we discussed for open-address hashing:

Check the square of the attempt-number away for an available slot, i.e.,

[home address + ((rehash attempt #)2 +(rehash attempt #))/2] % (hash table size), where the hash table size

is a power of 2. Integer division is used above

quadratic

probing

DescriptionStrategy

a) Insert “Paul Gray” and then “Sarah Diesburg” using Linear (on left) and Quadratic (on right) probing.

John DoeJohn Doe

hash(John Doe) = 7

Philip EastPhilip East

hash(Philip East) = 3

Mark FienupMark Fienup

hash(Mark Fienup) = 5

Ben SchaferBen Schafer

hash(Ben Schafer) = 0

hash(Paul Gray) = 0

hash(Sarah Diesburg) = 7

Hash functionHash Table with Linear Probing Hash Table with Quad. Probing

00

11

22

33

44

55

66

77

b) What is the purpose of requiring a hash table size that is a power of 2 when using quadratic probing?

Question 8. (15 points) Use the below diagram to explain the worst-case big-oh notation of merge sort. Assume

“n” items to sort.

Unsorted size n
Compares # Moves

 Sorted size n

Unsorted size n/2

 Sorted size n/2

Unsorted size n/2

 Sorted size n/2

n/4

n/4

n/4

n/4

n/4

n/4

n/4

n/4

1

2

2

22

22

2

2

2

2

2

2

2

2

2 2

2 2

2

2

. . .

.
 .

.

.
 .

.

.
 .

.

.
 .

.

Fall 2014 Name: ______________________

4

