
Data Structures - Test 2

Question 1. (10 points) What is printed by the following program? Output:

def recFn(myString, index):

 print(index)

 if index == 0:

 return “here”

 elif index == 1:

 return “there”

 else:

 return myString[index] + recFn(myString,index-2)

 (**)

print("result =",recFn(“abcdefgh”, 5))

 (*)

Question 2. (5 points) Write a recursive Python function to compute the Fibonacci mathematical function, fib(n):

fib(0) = 0 (if n is 0)

fib(1) = 1 (if n is 1)

fib(n) = fib(n-1) + fib(n-2) for all n values > 1.
def fib(n):

Question 3. a) (7 points) For the above recursive function fib(n), complete the calling-tree for fib(6).

fib(6)

fib(5)
fib(4)

b) (2 point) What is the value of fib(6)?

c) (6 point) What would be a better approach to calculating a fibonacci value than the above recursive function?

Fall 2016 Name: ______________________

1

Run-time Stack

myString:

 index: 5

(*)

Initial
call-frame
of recFn

ret. addr: "abcdefgh"

Question 4. (20 points.) Consider the following insertion sort code which sorts in ascending order.

def insertionSort(myList):

 for firstUnsortedIndex in range(1,len(myList)):

 itemToInsert = myList[firstUnsortedIndex]

 testIndex = firstUnsortedIndex - 1

 while testIndex >= 0 and myList[testIndex] > itemToInsert:

 myList[testIndex+1] = myList[testIndex]

 testIndex = testIndex - 1

 myList[testIndex + 1] = itemToInsert

a) What is the purpose of the testIndex >= 0 while-loop comparison?

b) Consider the modified insertion sort code that eliminates the testIndex >= 0 while-loop comparison.

def insertionSortB(myList):

 minIndex = 0

 for testIndex in range(1,len(myList)):

 if myList[testIndex] < myList[minIndex]:

 minIndex = testIndex

 temp = myList[0]

 myList[0] = myList[minIndex]

 myList[minIndex] = temp

 for firstUnsortedIndex in range(1,len(myList)):

 itemToInsert = myList[firstUnsortedIndex]

 testIndex = firstUnsortedIndex - 1

 while myList[testIndex] > itemToInsert:

 myList[testIndex+1] = myList[testIndex]

 testIndex = testIndex - 1

 myList[testIndex + 1] = itemToInsert

Explain how the bold code in the modified insertion sort code allows for the elimination of the testIndex >= 0

while-loop comparison.

Consider the following timing of the above two insertion sorts on lists of 10000 elements.

6.4 seconds7.3 secondsRandomly ordered list of 10000 numbers

0.004 seconds0.005 secondsAlready in ascending order: 1, 2, ..., 9999, 10000

12.3 seconds14.0 secondsSorted in descending order: 10000, 9999, ..., 2, 1

insertionSortB - modified

version in middle of the page

insertionSort - at the top of page

Initial arrangement of list before sorting

c) Explain why insertionSortB (modified version in middle of page) out performs the original insertionSort.

d) In either version, why does sorting the initially ascending order list take less time than sorting the initially

descending ordered list?

Fall 2016 Name: ______________________

2

Question 5. (25 points) In class we discussed the following bubble sort code which sorts in ascending order (smallest

to largest) and builds the sorted part on the right-hand side of the list.

def bubbleSort(myList):

 for lastUnsortedIndex in range(len(myList)-1,0,-1):

 alreadySorted = True

 # scan the unsorted part at the beginning of myList

 for testIndex in range(lastUnsortedIndex):

 # if we find two adjacent items out of order, switch them

 if myList[testIndex] > myList[testIndex+1]:

 temp = myList[testIndex]

 myList[testIndex] = myList[testIndex+1]

 myList[testIndex+1] = temp

 alreadySorted = False

 if alreadySorted:

 return

For this question write a variation of the above bubble sort that:

� sorts in descending order (largest to smallest),

� stops early if the inner-loop makes no swaps, and

� builds the sorted part on the left-hand side of the list. Sample picture after running a while:

1015 35 4525 606465687375 5095 90 80

Unsorted PartSorted Part

0 94 131 105 142 1163 127 8

Inner-loop should "bubble" the largest item

down the unsorted part from right to left

def BubbleSortVariation(myList):

Fall 2016 Name: ______________________

3

Question 6. Two common rehashing strategies for open-address hashing are linear probing and quadratic probing:

Check the square of the attempt-number away for an available slot, i.e.,

[home address + ((rehash attempt #)2 +(rehash attempt #))/2] % (hash table size), where the hash table size is

a power of 2. Integer division is used above

quadratic

probing

a) (8 points) Insert “Paul Gray” and then “Sarah Diesburg” using Linear (on left) and Quadratic (on right) probing.

John DoeJohn Doe

hash(John Doe) = 7

Philip EastPhilip East

hash(Philip East) = 3

Mark FienupMark Fienup

hash(Mark Fienup) = 6

Ben SchaferBen Schafer

hash(Ben Schafer) = 0

hash(Paul Gray) = 0

hash(Sarah Diesburg) = 6

Hash functionHash Table with Linear Probing Hash Table with Quad. Probing

00

11

22

33

44

55

66

77

b) (7 points) Explain why linear probing suffers from secondary clustering? (Recall that in secondary clustering

rehash patterns from initially different home addresses merge together)

Question 7. Quick sort general idea is as follows.

� Select a “random” item in the unsorted part as the pivot

� Rearrange (partitioning) the unsorted items such that:

� Quick sort the unsorted part to the left of the pivot

� Quick sort the unsorted part to the right of the pivot

a) (10 points) Explain how quick sort performs O(n log2 n) on random data.

Fall 2016 Name: ______________________

4

Pivot

Pivot Index

ItemAll items < to Pivot All items >= to Pivot

