
Data Structures - Test 2

Question 1. (10 points) What is printed by the following program? Output:

def recFn(a, b):

 print(a, b)

 if a == b:

 return 100

 elif a > b:

 return 10

 else:

 return recFn(a + 1, b - 2) + a

 (**)

print("result =",recFn(1, 9))

 (*)

Question 2. (10 points) Write a recursive Python function to compute the following mathematical function, G(n):

G(n) = n for all value of n ≤ 1

G(2) = 5 if n = 2

G(n) = G(n-5) + G(n-3) + G(n-2) for all n values > 2.
def G(n):

Question 3. a) (7 points) For the above recursive function G(n), complete the calling-tree for G(7).

G(7)

G(2) G(4) G(5)

b) (2 point) What is the value of G(7)?

c) (1 point) What is the maximum height of the run-time stack when calculating G(7) recursively?

Spring 2016 Name: ______________________

1

Run-time Stack

 a:

 b: 9

1

(*)
Initial
call-frame
of recFn

ret. addr:

Question 3. The insertion sort code discussed in class is:

def insertionSort(myList):
 for firstUnsortedIndex in range(1,len(myList)):
 itemToInsert = myList[firstUnsortedIndex]
 testIndex = firstUnsortedIndex - 1
 while testIndex >= 0 and myList[testIndex] > itemToInsert:
 myList[testIndex+1] = myList[testIndex]
 testIndex = testIndex - 1

 myList[testIndex + 1] = itemToInsert

Consider the following insertMergeSort code which calls the above insertionSort code twice with copies of each

half of the array, and then merges the two sorted halves back together using the merge code from merge sort.

def insertMergeSort(aList):
 halfSize = len(aList) // 2
 lefthalf = aList[: halfSize]
 righthalf = aList[halfSize :]
 insertionSort(lefthalf)
 insertionSort(righthalf)

 #### BELOW IS THE MERGE CODE FROM MERGE SORT ####
 i=0 # index into lefthalf
 j=0 # index into righthalf
 k=0 # index into aList
 while i<len(lefthalf) and j<len(righthalf): # compare and copy until one half runs out
 if lefthalf[i]<righthalf[j]:
 aList[k]=lefthalf[i]
 i=i+1
 else:
 aList[k]=righthalf[j]
 j=j+1
 k=k+1

 while i<len(lefthalf): # copy the remaining items from lefthalf if any
 aList[k]=lefthalf[i]
 i=i+1
 k=k+1

 while j<len(righthalf): # copy the remaining items from righthalf if any
 aList[k]=righthalf[j]
 j=j+1
 k=k+1

Consider the following timing of insertionSort vs. insertMergeSort on lists of 10000 elements.

3.6 seconds7.4 secondsRandomly ordered list of 10000 numbers

0.009 seconds0.005 secondsAlready in ascending order: 1, 2, ..., 9999, 10000

7.1 seconds14.3 secondsSorted in descending order: 10000, 9999, ..., 2, 1

insertMergeSort - modified

version in middle of the page

insertionSort - at the top of page

Initial arrangement of list before sorting

a) (10 points) Explain why insertMergeSort(modified version in middle of page) out performs the original

insertionSort.

b) (10 points) In either version, why does sorting the randomly order list take about halve the time of sorting the

initially descending ordered list?

Spring 2016 Name: ______________________

2

Question 4. (20 points) In insertion sort the inner-loop takes the "first unsorted item" (25 at index 6 in the below

example) and "inserts" it into the sorted part of the list "at the correct spot."

10 20 35 40 45 60 25 50 90

Sorted Part Unsorted Part

0 41 52 63 7 8

. . .

In class we discussed the following insertion sort code which sorts in ascending order (smallest to largest) and builds

the sorted part on the left-hand side of the list, i.e.:

def insertionSort(myList):

 for firstUnsortedIndex in range(1,len(myList)):

 itemToInsert = myList[firstUnsortedIndex]

 testIndex = firstUnsortedIndex - 1

 while testIndex >= 0 and myList[testIndex] > itemToInsert:

 myList[testIndex+1] = myList[testIndex]

 testIndex = testIndex - 1

 myList[testIndex + 1] = itemToInsert

For this question write a variation of the above insertion sort that:

� sorts in descending order (largest to smallest)

� builds the sorted part on the right-hand side of the list, i.e.,

10203540 456025 5090

Sorted PartUnsorted Part

0 41 52 63 7 8

. . .

def insertionSortVariation(myList):

Spring 2016 Name: ______________________

3

Question 5. Two common rehashing strategies for open-address hashing are linear probing and quadratic probing:

Check the square of the attempt-number away for an available slot, i.e.,

[home address + ((rehash attempt #)2 +(rehash attempt #))/2] % (hash table size), where the hash table size is

a power of 2. Integer division is used above

quadratic

probing

a) (8 points) Insert “Paul Gray” and then “Sarah Diesburg” using Linear (on left) and Quadratic (on right) probing.

John DoeJohn Doe

hash(John Doe) = 7

Philip EastPhilip East

hash(Philip East) = 3

Mark FienupMark Fienup

hash(Mark Fienup) = 6

Ben SchaferBen Schafer

hash(Ben Schafer) = 0

hash(Paul Gray) = 6

hash(Sarah Diesburg) = 7

Hash functionHash Table with Linear Probing Hash Table with Quad. Probing

00

11

22

33

44

55

66

77

b) (7 points) Explain why both linear and quadratic probing both suffer from primary clustering?

Question 6. Recall the general idea of Heap sort which uses a min-heap (class BinHeap with methods: BinHeap(),

insert(item), delMin(), isEmpty(), size())) to sort a list.

1. Create an empty heap

Generl idea of Heap sort:

2. Insert all n list items into heap

3. delMin heap items back to list in sorted order

myList sorted list with n items

myList unsorted list with n items

heap with

n items

a) (10 points) Complete the code for heapSort so that it sorts in descending order

from bin_heap import BinHeap

def heapSort(myList):

 myHeap = BinHeap() # Create an empty heap

b) (5 points) Determine the overall O() for your heap sort and briefly justify your answer.

Spring 2016 Name: ______________________

4

