
Data Structures - Test 2

Question 1. (10 points) What is printed by the following program? Output:

def recFn(a, b):

 print(a, b)

 if a < b:

 return a

 elif a == b:

 return a + b

 else:

 return a + recFn(a - 2, b + 1) - b

 (**)

print("Result = ", recFn(8, 0))
 (*)

Question 2. Write a recursive Python function to calculate (where n is an integer) based on the formulas:an

, for n = 0a0 = 1

, for n = 1a1 = a

, for even n > 1 (recall we can check for this in Python by n % 2 == 0)an = an/2an/2

, for odd n > 1an = a(n−1)/2a(n−1)/2a

a) (8 points) Complete the below powerOf recursive function

def powerOf(a, n):

b) (7 points) For the above recursive powerOf function, complete the calling-tree for powerOf (2, 6).

powerOf(2,6)

powerOf(2,3) powerOf(2,3)

c) (5 points) Suggest a way to speedup the above powerOf function.

Spring 2017 Name: ______________________

1

Run-time Stack

 a:
 b: 0

8

(*)
Initial
call-frame
of recFn

ret. addr:

Question 4. Two common rehashing strategies for open-address hashing are linear probing and quadratic probing:

Check the square of the attempt-number away for an available slot, i.e.,

[home address + ((rehash attempt #)2 +(rehash attempt #))//2] % (hash table size), where the hash table size is

a power of 2. Integer division is used above

quadratic

probing

a) (10 points) Insert “Paul Gray” and then “Sarah Diesburg” using Linear (on left) and Quadratic (on right) probing.

John DoeJohn Doe

hash(John Doe) = 7

Philip EastPhilip East

hash(Philip East) = 3

Mark FienupMark Fienup

hash(Mark Fienup) = 6

Ben SchaferBen Schafer

hash(Ben Schafer) = 0

hash(Paul Gray) = 3

hash(Sarah Diesburg) = 3

Hash functionHash Table with Linear Probing Hash Table with Quad. Probing

00

11

22

33

44

55

66

77

In lab 7, we inserted the 10000 even values 0, 2, 4, 6, 8, ..., 19996, 19998 is ascending order into various hash tables

and then timing searching for the 20000 values 0, 1, 2, 3, 4, 5, ..., 19996, 19997, 19998, 19999. On my office

computer the timings for these searches are:

0.115 seconds0.114 seconds0.128 seconds
Closed-address with unsorted linked list

at each home address (i.e., ChainingDict)

0.065 seconds0.064 seconds0.575 secondsOpen-address with Quadratic probing

0.062 seconds0.064 seconds12.19 secondsOpen-address with Linear probing

65,536 (0.15)32,768 (0.31)16,384 (0.61)

Timings of 20,000 Searches on Various Hash Table Sizes (Load Factors)Type of Hashing

b) (8 points) For load factor 0.61, why did the open-address with Linear probing perform much worse than

open-address with Quadratic probing?

c) (7 points) For load factors 0.31 and 0.15, why is the closed-address

(e.g., ChainingDict) version slower than the open-address versions?

Spring 2017 Name: ______________________

2

ChainingDict Object

_capacity

0

1

2

3

4

5

6

7

_size

_index_table

Python list of UnorderList objects containing Entrys

6 8

4

Question 5. (25 points) In class we developed the following selection sort code which sorts in ascending order

(smallest to largest) and builds the sorted part on the right-hand side of the list, i.e.:

 Unsorted Part Sorted Part

scan unsorted part from left
to right to find the max. item

max.
item

last
unsorted

item

Exchange the max. item
and last unsorted item

def selectionSort(aList):

 for lastUnsortedIndex in range(len(aList)-1, 0, -1):

 maxIndex = 0

 for testIndex in range(1, lastUnsortedIndex+1):

 if aList[testIndex] > aList[maxIndex]:

 maxIndex = testIndex

 # exchange the items at maxIndex and lastUnsortedIndex

 temp = aList[lastUnsortedIndex]

 aList[lastUnsortedIndex] = aList[maxIndex]

 aList[maxIndex] = temp

For this question write a variation of the above selection sort that:

� sorts in descending order (largest to smallest)

� builds the sorted part on the left-hand side of the list, i.e.,

 Sorted Part Unsorted Part

scan unsorted part from left
to right to find the max. item

max.
item

first
unsorted

item

Exchange the max. item
and first unsorted item

def selectionSortVariation(myList):

Spring 2017 Name: ______________________

3

Question 6. (10 points) Use the below diagram to explain the worst-case big-oh notation of merge sort. Assume “n”

items to sort.

Unsorted size n
Compares # Moves

 Sorted size n

Unsorted size n/2

 Sorted size n/2

Unsorted size n/2

 Sorted size n/2

n/4

n/4

n/4

n/4

n/4

n/4

n/4

n/4

1

2

2

22

22

2

2

2

2

2

2

2

2

2 2

2 2

2

2

. . .

.
 .

.

.
 .

.

.
 .

.

.
 .

.

Question 7. (10 points) Quick sort general idea is as follows.

� Select a “random” item in the unsorted part as the pivot

� Rearrange (partitioning) the unsorted items such that →→:

� Quick sort the unsorted part to the left of the pivot

� Quick sort the unsorted part to the right of the pivot

Explain how quick sort performs O(n2) in the worst-case.

Spring 2017 Name: ______________________

4

Pivot

Pivot Index

ItemAll items < to Pivot All items >= to Pivot

