Data Structures - Test 2

Question 1. (10 points) What is printed by the following program?

```python
def recFn(a, b):
    if a <= 0:
        return 1000
    elif b < 0:
        return 1000
    elif a > b:
        return recFn(a - 3, b - 5)
    else:
        return recFn(a - 1, b - 3) - b

print("Result = ", recFn(8, 10))
```

Output:

8 10
7 7
6 4
3 1

Result = 989

Question 2. a) (12 points) Write a recursive Python function to compute the binomial coefficient using the following recursive definition of $C(n, k)$:

$$C(n, k) = C(n-1, k-1) + C(n-1, k)$$

for $1 \leq k \leq (n-1)$, and

$$C(n, k) = 1$$

for $k = 0$ or $k = n$

```python
def C(n, k):
    if k == 0 or k == n:
        return 1
    else:
        return C(n-1, k-1) + C(n-1, k)
```

b) (8 points) For the above recursive function C(n,k), complete the calling-tree for C(4,2).

```
+-----+-----+-----+
| 3   | 1   | 2   |
+-----+-----+-----+
| C(3,1) + C(3,2) + 3 |
+-----+-----+-----+
| 1   | 2   | 1   |
+-----+-----+-----+
| C(2,0) + C(2,1) + C(2,2) |
+-----+-----+-----+
| 1   | 1   | 1   |
+-----+-----+-----+
| C(1,0) + C(1,1) + C(1,2) |
```

c) (3 points) What is the value of $C(4, 2)$?

6

d) (2 points) What is the maximum number of call-frames of C on the run-time stack when calculating $C(4, 2)$ recursively?
Question 3. (15 points) Consider the following simple sorts discussed in class -- all of which sort in ascending order.

```python
def bubbleSort(myList):
    for lastUnsortedIndex in range(len(myList)-1, 0, -1):
        for testIndex in range(lastUnsortedIndex):
            if myList[testIndex] > myList[testIndex+1]:
                temp = myList[testIndex]
                myList[testIndex] = myList[testIndex+1]
                myList[testIndex+1] = temp

def insertionSort(myList):
    for firstUnsortedIndex in range(1, len(myList)):
        itemToInsert = myList[firstUnsortedIndex]
        testIndex = firstUnsortedIndex - 1
        while testIndex >= 0 and myList[testIndex] > itemToInsert:
            myList[testIndex+1] = myList[testIndex]
            testIndex = testIndex - 1
        myList[testIndex + 1] = itemToInsert

def selectionSort(aList):
    for lastUnsortedIndex in range(len(aList)-1, 0, -1):
        maxIndex = 0
        for testIndex in range(1, lastUnsortedIndex+1):
            if aList[testIndex] > aList[maxIndex]:
                maxIndex = testIndex
        # exchange the items at maxIndex and lastUnsortedIndex
        temp = aList[lastUnsortedIndex]
        aList[lastUnsortedIndex] = aList[maxIndex]
        aList[maxIndex] = temp
```

<table>
<thead>
<tr>
<th>Type of sorting algorithm</th>
<th>Initial Ordering of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Descending</td>
</tr>
<tr>
<td>bubbleSort.py</td>
<td>23.3</td>
</tr>
<tr>
<td>insertionSort.py</td>
<td>14.2</td>
</tr>
<tr>
<td>selectionSort.py</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Timings of Above Sorting Algorithms on 10,000 items (seconds)

a) Explain why bubbleSort on a descending list (23.3 s) takes longer than bubbleSort on an ascending list (7.7 s). Same # of comparison, but ascending order will never find any items to swap. Descending order will always swap which is why it takes longer.

b) Explain why bubbleSort on a descending list (23.3 s) takes longer than insertionSort on a descending list (14.2 s).

Insertion comparer and shifts across whole sorted part (1 move/shift), but

b) Summary: same # comparators, but insertion does ~2/3 fewer moves so its faster.

c) Explain why selectionSort is \(\mathcal{O}(n^2)\) in the worst-case.

b) Summary: same # comparators, but insertion does ~2/3 fewer moves so its faster.

c) selection:

- \(n\) compares: \((n-1) + (n-2) + \ldots + 1\) = \(\frac{n(n-1)}{2}\) = \(\mathcal{O}(n^2)\)
Question 4. Two common rehashing strategies for open-address hashing are linear probing and quadratic probing:

<table>
<thead>
<tr>
<th>Probing Type</th>
<th>Search Outcome</th>
<th>0.25</th>
<th>0.5</th>
<th>0.67</th>
<th>0.8</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Probing</td>
<td>unsuccessful</td>
<td>1.39</td>
<td>2.50</td>
<td>5.09</td>
<td>13.00</td>
<td>5000.50</td>
</tr>
<tr>
<td>Quadratic Probing</td>
<td>unsuccessful</td>
<td>1.37</td>
<td>2.19</td>
<td>3.47</td>
<td>5.81</td>
<td>103.62</td>
</tr>
<tr>
<td>Quadratic Probing</td>
<td>successful</td>
<td>1.16</td>
<td>1.44</td>
<td>1.77</td>
<td>2.21</td>
<td>5.11</td>
</tr>
</tbody>
</table>

The "general rule of thumb" tries to keep the load factor between 0.5 and 0.67.

- (4 points) Why don’t you want the load factor to exceed 0.67? **Over a load factor of 0.67, there starts to be more probes.**

- (3 points) Why don’t you want the load factor to be less than 0.5? **Under a load factor of 0.5, the hash table wastes space, since it is less than half used.**

c) (5 points) In closed-address hashing (e.g., ChainingDict picture to the right) if the load factor (# items / hash table size) is 10, what would you expect for the average number of probes/compares of a successful search? (Justify your answer)

If the hash function is doing a good job randomizing keys to home addresses, then each list has about 10 items. We'd need to go about halfway down a list on average, so 5 compares would be expected on a successful search.
Question 5. (20 points) In class we discussed the bubbleSort code shown in question 3 on page 2 which sorts in
classic order (smallest to largest) and builds the sorted part on the right-hand side of the list.

For this question write a variation of bubble sort that:
- sorts in **descending order** (largest to smallest), and
- builds the sorted part on the left-hand side of the list, i.e.,

<table>
<thead>
<tr>
<th>Sorted Part</th>
<th>Unssorted Part</th>
</tr>
</thead>
</table>

```
def bubbleSortVariation(myList):
    for firstUnsortedIndex in range(0, len(myList)-1):
        for testIndex in range(len(myList)-1-firstUnsortedIndex):
            if myList[testIndex-1] < myList[testIndex]:
                temp = myList[testIndex]
                myList[testIndex] = myList[testIndex-1]
                myList[testIndex-1] = temp
```

Question 6. Recall the general idea of Quick sort:
- Partition by selecting a pivot item at “random” and then
 rearrange (partitioning) the unsorted items such that:
- Quick sort the unsorted part to the left of the pivot
- Quick sort the unsorted part to the right of the pivot

<table>
<thead>
<tr>
<th>Pivot Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>All items < to Pivot</td>
</tr>
</tbody>
</table>

a) (5 points) Explain why quick sort is $O(n \log n)$ when sorting initially randomly ordered items. (n is the
len(myList))

For random data we expect the pivot to roughly split
the list in about half

\[
\log n \text{ levels}
\]

b) (5 points) Explain why quick sort is $O(n^2)$ is the worst-case. (n is the len(myList))

If the pivot is always picked as the largest value

\[
O(n) \quad O(n) \quad O(n) \quad \ldots \quad O(n)
\]