
Homework #1 Data Structures Due: February 2 (Saturday at 11:59 PM)

Objects: Practice designing a program and “reviewing” Python file and os module usage. (NOTE: be sure to

review the example programs formattedOutput.py and changeDirectory.py found at:

www.cs.uni.edu/~fienup/cs1520s19/homework/example_programs_hw1.zip)

Electronic Quiz Grader Program

The eLearning multiple-choice-quiz grader has broken down, so Professor Smart N. Lazy wants you to write a

program (quizGrader.py) to grade the class’s eLearning quizzes. After extracting the files from:

 http://www.cs.uni.edu/~fienup/cs1520s19/homework/hw1.zip

you will find that the hw1 folder contains:

� students.txt - a text file containing the student names in the class

� one or more quiz# directories - each directory contains an answers.txt text file with the correct answers

and text files for each student who took the quiz. The student file names are lastname_firstname.txt

WARNING: don’t tailor your program to only work with these students (e.g., Doe, Jane) or quizzes. You program

should work with different data files than are named the same (e.g., there is always a students.txt file, etc.)

 hw1

students.txt

Doe, Jane

Jones, Tom

Kidd, Billy

Smith, Sally

quiz1 quiz7

answers.txt answers.txtdoe_jane.txt doe_jane.txtsmith_sally.txt smith_sally.txt

A DC AA D

B BB BB A

A BA AB

C AC CC B

. . .

. . .

. . .

B

B B C

Your program (called quizGrader.py) should run from inside the hw1 directory (i.e., develop it inside the hw1

directory) to generate a gradeReport.txt file that looks something like:

 Student Quiz Report

 Total Overall

Student Quiz Points Quiz %

Doe, Jane 30 71.4

Jones, Tom 40 95.2

Kidd, Billy 35 83.3

Smith, Sally 36 85.7

Points Possible 42

For extra credit, you can report more details (e.g., individual quiz scores for each student):

 Student Quiz Report

 Total Overall

Student Quiz 1 Quiz 2 Quiz 7 Quiz Points Quiz %

--------------------------------- ... -------------------------------

Doe, Jane 3 5 2 30 71.4

Jones, Tom 4 6 5 40 95.2

Kidd, Billy 3 4 4 35 83.3

Smith, Sally 3 6 1 36 85.7

Points Possible 4 7 5 42

When you write your program, be sure you:

� think about the functional-decomposition (top-down) design before you start to write code. You’ll need to turn

in a design document, so you should might as well start there. Hint: model what a teach would do by hand.

� think about built-in Python data structures (lists or dictionaries)

� use meaningful variable names with good style (i.e., useCamelCase)

� use comments (""" Multi-line Comment """) at the start of the program and immediately after each function

definition describing what they do (see lab1 diceOutcomes.py program)

� use a main function (see lab1 diceOutcomes.py program) located at the top of program with a call to it at

the bottom to start execution

� use global constants where appropriate with good style (ALL_CAPS_AND_UNDERSCORES). (Put your

global constants after your initial comments describing the program and before your main function definition so

they can be found and changed easily in future versions of your program.)

Submit your homework electronically at https://www.cs.uni.edu/~schafer/submit/which_course.cgi

Submit a single zipped file, hw1.zip containing the following:

� quizGrader.py (your Python program)

� design.doc (or design.pdf, or design.txt, design.jpg, or design.rtf) a document describing the design of your

program including a functional-decomposition diagram with text describing each function. The level of detail

should be similar to lab1 description included below!

� original data files and directories contained in hw1.zip downloaded (students.txt, etc.)

Recall the Lab 1 functional-decomposition that you can model for this homework’s design document. Your design

diagram should include the flow of information between your functions.

main

displayWelcomeAndInputRolls

calculateFrequentRolls

displayResults

rollAndTallyOutcomes findOutcomes

mostFrequentRolls

highestCount

mostFrequentRollshighestCount

outcomeCounts

outcomeCountshighestCount

outcom
eC

ounts

max

mostFrequentRolls

highestC
ount

displayWelcomeAndInputRollsdisplayWelcomeAndInputRolls
numberOfRolls

numberOfRolls

For each function, include a brief description of what it does (NOT the code/algorithm):

main - provides an outline of program by calling top-level functions

displayWelcomeAndInputRolls - Displays welcome message for the user. Gets and returns the number of

dice rolls from the user.

calculateFrequentRolls - Rolls the dice the correct number of times, tallies the outcomes, and returns a list

of outcomes with the highest count and highest count.

rollAndTallyOutcomes - Rolls the dice the correct number of times and tallies the outcomes. Returns a list of

tallies with the index being the outcome.

max - built-in function to return the largest item in an iterable data structure like a list.

findOutcomes - Returns a list of outcomes with the highest count.

displayResults - Displays the outcome(s) with the highest percentage.

