
Objective: To gain experience implementing linked data structures by implementing a cursor-based list using

doubly-linked nodes.

To start the homework: Download and extract the file hw3.zip from

http://www.cs.uni.edu/~fienup/cs1520s19/homework/

The hw3.zip file contains:

� the Node class (in the node.py module) and the Node2Way class (in the node2way.py module)

� the skeleton CursorBasedList class (in the cursor_based_list.py module) which you will complete

� the cursorBasedListTester.py file that you can use to interactively test your CursorBasedList class.

Part A: Recall that in a cursor-base list a cursor (indicating the current item) can be moved around the list with

the cursor being used to identify the region of the list to be manipulated. We will insert and removing items

relative to the current item. A current item must always be defined as long as the list is not empty.

Precondition: the list is not empty. Removes and returns the current item.

Making the next item the current item if one exists; otherwise the tail item in

the list is the current item unless the list in now empty.

L.remove()

Precondition: the list is not empty. Replaces the current item by the newValue. L.replace(newValue)

Inserts item before the current item, or as the only item if the list is empty. The

new item is the current item.

L.insertBefore(item)

Inserts item after the current item, or as the only item if the list is empty. The

new item is the current item.

L.insertAfter(item)

Precondition: the list is not empty. Makes the last item the current item. L.last()

Precondition: the list is not empty. Makes the first item the current item. L.first()

Precondition: hasPrevious returns True. Postcondition: The current item has

moved left one item

L.previous()

Precondition: the list is not empty. Returns True if the current item has a

previous item; otherwise return False.

L.hasPrevious()

Precondition: hasNext returns True. Postcondition: The current item has moved

right one item

L.next()

Precondition: the list is not empty. Returns True if the current item has a next

item; otherwise return False.

L.hasNext()

Precondition: the list is not empty. Returns the current item without removing

it or changing the current position.

L.getCurrent()

Description of operationCursor-based operations

The cursor_based_list.py file contains a skeleton CursorBasedList class. You MUST uses a

doubly-linked list implementation with a header node and a trailer node. All “real” list items will be inserted

between the header and trailer nodes to reduce the number of “special cases” (e.g., inserting first item in an

empty list, deleting the last item from the list, etc.). An empty doubly-linked list implementation with a header

node and a trailer node looks like:

previous data next previous data next

_header

_current

_trailer

_size 0

"Header Node" "Trailer Node"

Use the provided cursorBasedListTester.py program to test your list.

Data Structures (CS 1520) Homework #3 Due: March 2 (Saturday) at 11:59 PM

PART B: Once you have your CursorBasedList class finished, you are to write a simple text-editor program

that utilizes your CursorBasedList class.

When your text-editor program starts, it should ask for a text-file name (.txt) to edit. If the file name exists, it

should load the file into an initially empty CursorBasedList object by reading each line from the file and use

the insertAfter method to append the line to the list. Each node in the list will hold a single line of the text

file. If the text-file name specified at startup does not exist, an empty CursorBasedList object is created to

model editing a new file.

Regardless of whether you loaded a file or just created an empty list, a menu-driven loop very similar to the

cursorBasedListTester.py program should allow you to edit the file’s content by modifying the list. You

should NOT need to modify your CursorBasedList class only create a CursorBasedList object and use

its methods. Make sure that your editor does not violate any preconditions of the CursorBasedList methods,

so your editor is robust, i.e., does not crash when editing.

When done editing, the lines of data contained in the nodes of the CursorBasedList are written back to the

text file.

Your text-editor program should present a menu of options that allows the user to:

� navigate and display the first line, i.e., the first line should be the current line

� navigate and display the last line, i.e., the last line should be the current line

� navigate and display the next line, i.e., the next line should become the current line. If there is no next line,

tell the user and don’t change the current line

� navigate and display the previous line. Similarly, if there is no previous line, tell the user and don’t change the

current line.

� insert a new line before the current line

� insert a new line after the current line

� delete the current line and have the line following become the current line. If there is no following line, the

current line should be the last line.

� replace the current line with a new line

� save the current list back to a text file

Warning: When you load a text file into your list nodes, you can leave the ‘\n’ characters on the end of each line

of text. However, remember to add a ‘\n’ character to end of inserted lines or replacement lines.

Implement AND fully test your text-editor program. Part of your grade will be determined by how robust

your text-editor runs (i.e., does not crash) and how user-friend/intuitive your program is to use. You are required

to submit a brief User's manual on how to use your text-editor.

For extra credit, your program may provide do one or more of the following additional text-editor functionality:

� Find word and Find next occurance

� Replace a specified word/string on the current line by another word/string

� Copy and Paste a line, etc.

Be sure to include these additional features in your User's manual.

(NOTE: You design document needed, but you should submit a brief (< a page) User’s manual)

Submit all necessary files (cursor_based_list.py, node.py, node2way.py, text_editor.py, etc.) as a single

zipped file (called hw3.zip) electronically at : https://www.cs.uni.edu/~schafer/submit/which_course.cgi

Data Structures (CS 1520) Homework #3 Due: March 2 (Saturday) at 11:59 PM

