
This assignment has several parts -- a comparison of dictionary implementations (from labs 7, 9, 10, hw 5) and a

concordance-production application using the dictionary ADTs. A Webster’s dictionary definition of concordance

is: “an alphabetical list of the main words in a work.” In addition to the main words, I want you to keep track of

all the line numbers where these main words occur. (e.g. like an index at the back of a textbook, but with line #s

instead of page #s)

WORD & LINE CONCORDANCE APPLICATION

The goal of this assignment is to process a textual, data file (WarAndPeace.txt) to generate a word concordance

with line numbers for each main word. A dictionary ADT is perfect to store the word concordance with the word

being the dictionary key and a Python list of its line numbers being the associated value with the key. Since the

concordance should only keep track of the “main” words, there will actually be a second stop-words file

(stop_words.txt). The stop-words file will contain a list of stop words (e.g., “a”, “the”, etc.) -- these words will

not be included in the concordance even if they do appear in the data file. Sample files might be:

a This is a sample data (text) file to bigger: 4
about

by

can

do

i

in

of

on

the

is

it

Sample output file

Notes:

Sample stop_words_small.txt file Sample hw6small.txt file

this

be processed by your word-concordance program.

The real data file is much bigger.

to

was

data: 1 4

file: 1 4

much: 4

processed: 2

program: 2

real: 4

sample: 1

text: 1

word-concordance: 2

your: 2

be

1) Words are defined to be sequences of letters delimited by any non-letter.
(e.g., white space, punctuation, parentheses, dashes, double quotes, etc.)

2) There is to be no distinction made between upper and lower case letters.
(e.g., "CAT" is the same word as "cat")

(e.g., line 3 above is blank)
3) Blank lines are to be counted in the line numbering.

The general algorithm for the word-concordance program is:

1) Read the stop_words_small.txt (or stop_words.txt) file into a dictionary (use the same type of

dictionary that you’re timing) containing only stop words, called stopWordDict. (WARNING: Strip the

newline (‘\n’) character from the end of the stop word before adding it to stopWordDict)

2) Process the hw6small.txt (or WarAndPeace.txt) file one line at a time to build the word-concordance dictionary

(called wordConcordanceDict) containing “main” words for the keys with a Python list of their associated line

numbers as their values. The main loop is something like:
lineCounter = 1

 uniqueNon_stopWordList =[] # These words match the keys in wordConcordanceDict

for each line in the data file do

processLine(lineCounter, line, wordConcordanceDict, uniqueNon_stopWordList, ...)

lineCounter += 1

 uniqueNon_stopWordList.sort() # You can use this list to iterate through the words in sorted order for any dictionary

3) Traverse the wordConcordanceDict alphabetically by key to generate a text file containing the concordance

 words printed out in alphabetical order along with their corresponding line numbers.

The general algorithm for the processLine (lineCounter, line, wordConcordanceDict , uniqueNon_stopWordList...) function is:
wordList = createWordList(line)

for each word in the wordList do

if the word is not in the stopWordDict then

if the word is in the wordConcordanceDict then

look up the line-#-list value associated with the word in the wordConcordanceDict

append the lineCounter to the end of the line-#-list

else

add the word with an associated [lineCounter] list value to the wordConcordanceDict

 append word to uniqueNon_stopWordList

Data Structures (CS 1520) Homework #6 Due: 5/4/19 (Sat.) at 11:59 PM

Note: I strongly suggested that the logic for reading words and assigning line numbers to them be developed and

tested separately from other aspects of the program. This could be accomplished by reading a sample file and

printing out the words recognized with their corresponding line numbers without any other word processing.

DICTIONARY ADT COMPARISON

We have 6 dictionary ADT implementations from labs 7, 9, 10, and homework 5: ChainingDict,

OpenAddrHashDict with linear probing, OpenAddrHashDict with quadratic probing, single BST-based

dictionary, single AVL-tree-based dictionary, and ClosedAddrUsingBSTDict from homework 5.

None of these should need to be modified much. You just use their dictionary operations.

Time your word-concordance application using all six dictionary ADT implementations to complete the following

table: (FYI, for WarAndPeace.txt there are about 2,700 stop words and less than 20,000 non-stop words). Both

the stop words and non-stop words should use the same type of dictionary (e.g., both are different ChainingDict’s).

Have just one word-concordance program with 5 pairs of dictionaries with all but one pair commented out, i.e., the

dictionary pair you are timing is the only pair uncommented.

ClosedAddrUsingBSTDict (hash table sizes

2**15 = 32768)

Dictionaries implemented using AVL trees

Dictionaries implemented using BSTs

 OpenAddrHashDict with quadratic probing

(hash table sizes 2**15 = 32768)

 OpenAddrHashDict with linear probing

(hash table sizes 2**15 = 32768)

 ChainingDict (hash table sizes 2**15 = 32768)

Word-concordance Program Execution Time (seconds)Dictionary ADT Implementation Used

DATA FILES - Download hw6.zip file at http://www.cs.uni.edu/~fienup/cs1520s19/homework/ it contains:

� ChainingDict in the file chaining_dictionary.py and OpenAddrHashDict in the file

open_addr_hash_dictionary.py

� the sample data files for testing your word-concordance program: hw6small.txt and stop_words_small.txt

� the “real” stop words are in the file stop_words.txt

� the “real” data file to be processed by your word-concordance program is in the file WarAndPeace.txt

EXTRA CREDIT POSSIBILITIES:

1) Modify OpenAddrHashDict dictionary ADT to allow double hashing as a rehashing technique.

2) Modify OpenAddrHashDict dictionary ADT to allow the capacity of hash table to double if the hash table load

 factor exceeds 0.7.

3) Modify the ClosedAddrUsingBSTDict dictionary ADT to use AVL-tree at each hash table “slot” for storage.

SUBMISSION

Submit ALL necessary files to run your concordance-production application using the dictionary ADTs as a single

zipped file (called hw6.zip) electronically at

https://www.cs.uni.edu/~schafer/submit/which_course.cgi

Include in your hw6.zip file a "results" file (.txt, .doc, .rtf, .odt, etc.) containing the completed table above, i.e.,

timing results for your word-concordance programming using the various dictionary ADTs.

Data Structures (CS 1520) Homework #6 Due: 5/4/19 (Sat.) at 11:59 PM

