
Objectives: To understand how a graph can be used to solve graph algorithms.

To start the lab: Download and unzip the file lab12.zip

Part A: In IDLE open the PriorityQueue class file: lab12/priorityQueue.py. The changes to our

familiar BinHeap class that we discussed in lecture are included:

� self.heapArray is a list of tuples with the first tuple value (tuple index 0) being the “priority” and second

tuple value (tuple index 1) being its associated “key” value.

� a __contains__ method is added to check if a value is in the priority queue.

� a decreaseKey method is added to allow a priority value to be reduced (i.e., increasing its priority).

a) Why do the methods percDown, minChild, and percUp used the tuple index 0 when comparing tuples in

the self.heapArray?

b) Why do the methods decreaseKey and __contains__ used the tuple index 1 when comparing tuples in

the self.heapArray?

c) Run the lab12/make_min_spanning_tree.py program which uses Prim’s algorithm on the graph from

lecture. Does it give the expected output?

d) Predict the order of edges added by Prim’s algorithm if we start at vertex “e”:

a

b

d

h

e

f

g

c

d) Modify the lab12/make_min_spanning_tree.py program to verify your prediction. NOTE: This is a

very easy modification. You just need to start Prim’s algorithm starting at the vertex labeled “e”.

After you have answered the above questions and completed the code, raise your hand and explain your

answers.

Data Structures Lab 12 Graphs 2 Name:____________

Lab12 - 1

Part B: The textbook’s Dijkstra’s Algorithm code (Listing 7.11 p. 341 and same on-line) is in the

lab12/graph_algorithms.py file.

a) Run the lab12/test_dijkstra.py program which uses Dijkstra’s algorithm on the graph from lecture.

Does it give the expected output?

b) Modify the dijkstra function in the lab12/graph_algorithms.py file by comparing it to the similar

prim function.

After you have fixed the dijksta function in lab12/graph_algorithms.py, raise your hand and

demonstrate your code by running the lab12/test_dijkstra.py program.

Part C: In IDLE open the PriorityQueue class file: lab12/Part_C/priorityQueue.py. This

version adds a data attribute self.keyToIndexDict dictionary where the keys are all the second tuple values

in the self.heapArray and their values are there corresponding index locations in is the self.heapArray.

The methods buildHeap, percDown, minChild, and percUp have all been modified to correctly update the

self.keyToIndexDict dictionary.

Your task for Part C is to complete the methods decreaseKey and __contains__ so that they use the

self.keyToIndexDict dictionary. Thus, greatly improving the efficiency of decreaseKey and

__contains__ methods.

After you have completed the decreaseKey and __contains__ methods in

lab12/Part_C/priorityQueue.py, raise your hand and demonstrate your code by running the

lab12/Part_C/make_min_spanning_tree.py program.

The EXTRA CREDIT Opportunities related to Part B:

1. Add code to the end of the test_dijkstra.py program to print the shortest paths from v0 to each of the

other vertices. One line of output might look something like:

“Shortest path from v0 to v4 is v0 > v3 > v4 with a total distance of 4”

Data Structures Lab 12 Graphs 2 Name:____________

Lab12 - 2

0 1

3

2

4

4

1

5 9

3
23

3

4

2
3

v
v

v

v

v

