
Objective: To understand priority queue implementations in Python including being able to determine the big-oh
of each operation.

To start the lab: Download and unzip the file at: www.cs.uni.edu/~fienup/cs1520s19/labs/lab4.zip

Part A:

a) Suppose that we have a priority queue with integer priorities such that the smallest integer corresponds to the
highest priority. For the following priority queue, which item would be dequeued next?

40

30

10

5

79
13

priority queue:

b) The ListPriorityQueue implementation in lab4/list_priority_queue.py uses an unorder
Python list.

 _items:

 ListPriorityQueue Object

List Object

1030 13 7940 5

0 31 42 5

What would be the big-oh notation for each of the following methods: (justify your answer)

 enqueue:

 dequeue:

c) The SortedListPriorityQueue implementation in lab4/sorted_list_priority_queue.py
uses a Python list order by priorities in decending order.

 _items:

 SortedListPriorityQueue Object

List Object

1030 1379 40 5

0 31 42 5

What would be the big-oh notation for each of the following methods: (justify your answer)

 enqueue:

 dequeue

d) Why would it be a bad idea to implement a priority queue using a Python list order by priorities in reverse
(ascending) order? (HINT: What is the big-oh notations for enqueue and dequeue?)

 _items:

 SortedListPriorityQueue Object

List Object

10 3013 7940 5

0 31 42 5

Answer the above questions, then raise your hand. Explain your answers to an instructor or TA.

Data Structures (CS 1520) Lab 4 Name:_________________

Lab 4 - 1

Part B: (Lecture 7 and) Section 6.6 discusses a very “non-intuitive”, but powerful list/array-based approach to
implement a priority queue, call a binary heap. The list/array is used to store a complete binary tree (a full tree
with any additional leaves as far left as possible) with the items being arranges by heap-order property, i.e., each
node is  either of its children. An example of a min heap “viewed” an a complete binary tree would be:

 10

25 15

 50 40 11030

300 85 45

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

1 2 3 4 5 6 7 8 9 100
 not
used 10 25 15 50 40 30 110 300 85 45

Python List actually used
to store heap items

a) For the above heap, the list/array indexes are indicated in []'s. For a node at index i, what is the index of:

 its left child if it exists:
 its right child if it exists:
 its parent if it exists:
Recall the General Idea of insert(newItem):
 append newItem to the end of the list (easy to do, but violates heap-order property)
 restore the heap-order property by repeatedly swapping the newItem with its parent until it percolates up to the

correct spot
b) What would the above heap look like after inserting 18 and then 27? (show the changes on above tree)

c) What is the big-oh notation for inserting a new item in the heap?

Now let us consider the delMin operation that removes and returns the minimum item. Recall the General Idea
of delMin():

 remember the minimum value so it can be returned later (easy to find - at index 1)
 copy the last item in the list to the root, delete it from the right end, decrement size
 restore the heap-order property by repeatedly swapping this item with its smallest child until it percolates

down to the correct spot
 return the minimum value

 10

25 15

 50 40 11030

300 85 45

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

d) What would the above heap look like after delMin? (show the changes on above tree)

Answer the above questions, then raise your hand. Explain your answers to an instructor or TA.

Data Structures (CS 1520) Lab 4 Name:_________________

Lab 4 - 2

Part C: Run the lab4/timePriorityQueues.py program that enqueues 20,000 random integers followed
by dequeueing all 20,000 integers from various priority queues discussed above. Complete the following timing
table from the output of timePriorityQueues.py.

Binary heap stored in a Python list

“Reverse” sorted Python list in
ascending order

Sorted Python list in descending
order

Unsorted Python list

Dequeuing 20,000 intsEnqueuing 20,000 Random ints
Execution Time in Seconds

Priority Queue Implementation

b) Why does it take more time to enqueue 20,000 items in the “unsorted” Python list version than dequeue
20,000 in the sorted Python list version?

c) Why does it take more time to dequeue 20,000 items in the heap version than enqueue 20,000 in the heap
version?

d) Why is the heap implementation of the priority queue considered “better” than the other three?

After you have answered the above questions, raise your hand and explain your answers.

If you have extra time, complete previous labs (1 to 3) or work on homework!

Data Structures (CS 1520) Lab 4 Name:_________________

Lab 4 - 3

