
Objective:  To understand recursion by writing simple recursive solutions.  

To start the lab:  Download and unzip the file at:  www.cs.uni.edu/~fienup/cs1520s19/labs/lab5.zip

Part A:  Recall:  We modified the textbook’s ordered list ADT that uses a singly-linked list implementation by
adding the _size,  _tail, _current, _previous, and _currentIndex attributes:

data   next data   next data   next data   next data   next

_head

 _currentIndex

             _tail

_current

_size

_previous

4

3

'm' 'w''a' 'y''c'

OrderedList Object

##    NON-RECURSIVE CODE WE ARE REPLACING

    def search(self, targetItem):
        if self._current != None and \

          self._current.getData() == targetItem:

            return True

        
        self._previous = None

        self._current = self._head

        self._currentIndex = 0

        while self._current != None:

            if self._current.getData() == targetItem:

                return True

            elif self._current.getData() > targetItem:

                return False

            else: #inch-worm down list

                self._previous = self._current

                self._current = self._current.getNext()

                self._currentIndex += 1

        return False

    def search(self, targetItem):

        def searchHelper():
            """ Recursive helper function that moves down the linked list.
                It has no parameters, but uses self._current, self._previous, and
                self._currentIndex."""
            # ADD CODE HERE

            

        # START OF SEARCH - DO NOT MODIFY BELOW CODE
        if self._current != None and \
           self._current.getData() == targetItem:
            return True

        

        self._previous = None
        self._current = self._head
        self._currentIndex = 0
        return searchHelper()  # Returns the result of searchHelper

a)  What are the base case(s) for the searchHelper that halt the while-loop of the non-recursive search codc?

b)  What are the recursive case(s) for the searchHelper that replaces the while-loop of the non-recursive search
codc?

c)  Complete the recursive searchHelper function in the search method of our OrderedList class in
ordered_linked_list.py.  Test it with the listTester.py program.

Raise your hand when done.  Demonstrate and explain your code to an instructor.

Data Structures (CS 1520) Lab 5 Name:_________________

Lab 5 - 1



Part B:  Recall that Lecture 7 and Section 6.6 discussed a very “non-intuitive”, but powerful list/array-based
approach to implement a priority queue, call a binary heap.  The list/array is used to store a complete binary tree (a
full tree with any additional leaves as far left as possible) with the items being arranges by heap-order property, i.e.,
each node is  either of its children.  An example of a min heap “viewed” an a complete binary tree would be:

  6

15 10

114 20 5020

300 125  117

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

1 2 3 4 5 6 7 8 9 100
 not
used 6 15 10 114  20  20  50 300 125 117

Python List actually used
to store heap items

Recall the General Idea of insert(newItem):

 append newItem to the end of the list (easy to do, but violates heap-order property)
 restore the heap-order property by repeatedly swapping the newItem with its parent until it percolates up to the

correct spot

Recall the General Idea of delMin():

 remember the minimum value so it can be returned later (easy to find - at index 1)
 copy the last item in the list to the root, delete it from the right end, decrement size
 restore the heap-order property by repeatedly swapping this item with its smallest child until it percolates down to

the correct spot
 return the minimum value

Originally, we used iteration (i.e., a loop) to percolate up (see percUp) and percolate down (see percDown) the
tree.  (textbook code below)
##    NON-RECURSIVE CODE WE ARE REPLACING

def percUp(self,i):
    while i // 2 > 0:
        if self.heapList[i] < self.heapList[i//2]:
           tmp = self.heapList[i // 2]
           self.heapList[i // 2] = self.heapList[i]
           self.heapList[i] = tmp
        i = i // 2

def percDown(self,i):
    while (i * 2) <= self.currentSize:
        mc = self.minChild(i)
        if self.heapList[i] > self.heapList[mc]:
            tmp = self.heapList[i]
            self.heapList[i] = self.heapList[mc]
            self.heapList[mc] = tmp
        i = mc

For part B, I want you to complete the recursive percUpRec and recursive percDownRec methods in
binHeap.py.  Run the binHeap.py file to test your code.

Raise your hand when done.  Demonstrate and explain your code to an instructor.

(If you have extra time, work on previous labs or homeworks!)

Data Structures (CS 1520) Lab 5 Name:_________________

Lab 5 - 2


