
Objectives: You will gain experience:
 get a feel for simple sorts: selection, bubble, and insertion sorts
 get a feel for advanced sorts: heap, quick, and merge sorts

To start the lab: Download and unzip the file: http://www.cs.uni.edu/~fienup/cs1520s19/labs/lab8.zip
The lab8.zip file you downloaded and extracted contains the following sorting algorithms which all sort in ascending
order (i.e., from smallest to largest):
 bubbleSort.py - bubble sort code which does not check if it can stop early
 bubbleSortB.py - bubble sort code which stops early if no swapping is needed during a scan of the unsorted part
 insertionSort.py - the insertion sort
 selectionSort.py - the selection sort code we developed in class

Each program runs the sorting algorithm several time with different initial orderings of 10,000 list items. The initial
orderings of items are: descending order, ascending order, random order, and random order again to check for
consistence. Complete the following timings by running the each program.

 selectionSort.py
insertionSort.py
bubbleSortB.py
bubbleSort.py

Random order 2Random order 1AscendingDescending
Initial Ordering of ItemsType of sorting algorithm

Timings of Sorting Algorithms on 10,000 items (seconds)

Study the code and answer the following questions about the sorting algorithms:
a) Why does the bubbleSort algorithm take less time on the ascending ordered list than the descending ordered list?

b) Why does the bubbleSortB algorithm take A LOT less time on the ascending ordered list than the descending
ordered list?

c) Why does the insertionSort algorithm take A LOT less time on the ascending ordered list than the descending
ordered list?

d) Why does the insertionSort algorithm take less time on the descending ordered list than the bubbleSort algorithm
on the descending ordered list?

Data Structures (CS 1520) Lab 8 Name:___________________________

Lab 8 - 1

e) Why does the selectionSort algorithm take less time on the descending ordered list than the insertionSort
algorithm on the descending ordered list?

After you have answered the above questions, raise your hand and explain your answers.

Part B:
a) Complete the heap sort function in lab8/heapSort.py which contains the template for the heap sort
algorithm discussed in class. Recall the steps of the algorithm:

1. Create an empty heapSteps:

2. Insert all n list items into heap

3. delMin heap items back to list in sorted order

myList sorted list with n items

myList unsorted list with n items

heap with
n items

b) Time the heap sorting algorithm using lab8/timeHeapSort.py on 100,000 random items, 200,000 random
items, and 400,000 random items.

400,000
200,000
100,000

Your Heap Sort Timing# Items

c) Explain the O() for your heap sort algorithm?

Data Structures (CS 1520) Lab 8 Name:___________________________

Lab 8 - 2

d) The general idea merge sort is as follows. Assume “n” items to sort.
 Split the unsorted part in half to get two smaller sorting problems of about n/2
 Solve both smaller problem recursively using merge sort
 “Merge” the solution to the smaller problems together to solve the original sorting problem of size n

10

10

10

10

20

20

20

20

35

35

35

35

40

40

40

40

45

45

45

45

60

60

60

60

25

25

25

25

50

50

50

50

Unsorted Part

 Sorted Part

Unsorted Left Half

 Sorted Left Half

Unsorted Right Half

 Sorted Right Half

0

0

0

0

0

0

4

4

1

1

1

1

1

1

5

5

2

2

2

2

2

2

6

6

3

3

3

3

3

3

7

7

The textbook’s merge sort is in mergesort.py. Use the timeMergeSort.py program to run merge sort on a
list of random items. Complete the following timing table:

400,000
200,000
100,000

Textbook’s Merge Sort TimingsRandom # Items

e) Recall the general idea of Quick sort is as follows. Assume “n” items to sort.
 Select a “random” item in the unsorted part as the pivot
 Rearrange (called partitioning) the unsorted items such that:

Pivot

Pivot Index

Item
All items < to Pivot All items >= to Pivot

 Quick sort the unsorted part to the left of the pivot
 Quick sort the unsorted part to the right of the pivot

The lecture 17 quick sort is in quicksort.py. Use the timeQuickSort.py program to run quick sort on a
list of random items. Complete the following timings to get a feel for the “speed” of quicksort.

400,000
200,000
100,000

Lecture 17 Quick Sort Timings# Items

All three advanced sorting algorithms are (nlog2n) on initially random data. Why do you suppose quick sort is the
fastest advanced sort on random items?

After you have completed the above times and answered the above question, raise your hand and explain
your answers.

Data Structures (CS 1520) Lab 8 Name:___________________________

Lab 8 - 3

Part C: EXTRA CREDIT

a) Write (pencil-and-paper below) a variation of bubble sort that:
 sorts in descending order (largest to smallest)
 builds the sorted part on the left-hand side of the list, i.e.,

Sorted Part Unsorted Part

Inner loop scans from right to left
across the unsorted part swapping
adjacent items that are "out of order"

(Your code does NOT need to stop early if a scan of the unsorted part has no swaps)

def bubbleSortC(myList):

b) Implement and test your bubbleSortC code.

Data Structures (CS 1520) Lab 8 Name:___________________________

Lab 8 - 4

