
Objectives: You will gain experience BST performance and implementation

To start the lab: Download and unzip the file: http://www.cs.uni.edu/~fienup/cs1520s19/labs/lab9.zip

Part A: Consider the Binary Search Tree (BST) below. For each node in a BST, all values in the left-subtree are <
the node and all values in the right-subtree are > the node.

60

8030

69 90

82 97

18 40

78

Level
 0

 1

 2

 3

 Height of a
 BST is the
 max. level so
 the height is 3

a) Review section 6.5.2 on Tree Traversals to determine the order nodes are processed in each tree traversal.

 What is the order of node processing in a preorder traveral of the above BST?

 What is the order of node processing in a postorder traveral of the above BST?

 What is the order of node processing in a inorder traveral of the above BST?

b) Starting with an empty BST, what would be the shape of the BST after put’s for keys: 50, 60, 30, 70, 90, 40,
65?

After you have answered the above questions, raise your hand and explain your answers.

Data Structures (CS 1520) Lab 9 Name:___________________________

Lab 9 - 1

Part B: Run the timeBinarySearchTree.py program that:
 creates a list, evenList, that holds 3,000 sorted, even values (e.g., evenList = [0, 2, 4, 6, 8, ..., 5996, 5998])
 puts (adds) all the evenList items into an initially empty BinarySearchTree object, bst
 times the searches (in) bst for target values 0, 1, 2, 3, 4, ..., 5998, 5999 so half of the searches are successful and

half are unsuccessful
a) How long does it take to search for target values of 0, 1, 2, 3, 4, ..., 5998, 5999?

b) Explain why these searches take so long. (Hint: consider the shape of the BinarySearchTree bst)

c) Uncomment the “shuffle(evenList)” which randomizes the items in evenList before adding them to the
BinarySearchTree bst. Now how long does it take to search for target values from 0, 1, 2, 3, 4, ..., 5998, 5999?

d) Explain why these searches take so little time.

e) What is the search time with the timeOpenAddrHashDictSearch.py program? Why is it faster?

Part C: a) Complete the recursive height method in the BinarySearchTree class. Model it after the
postorder traversal, since the height of the whole BST can be determined after you know the height of the
left-subtree and height of the right-subtree. For example if the left-subtree has a height of say 8 and the right-subtree
has a height of 5, then the overall height including the root is 9 (i.e., one more than the tallest subtree’s height). For
the base case of the recursion, if we define the empty subtree’s height to be -1 (i.e., subtreeRoot points to None
since it has no TreeNode to point at), then the recursive definition still works for a leaf node which should have a
height of 0.

b) Uncomment the call to the height method at the end of
the timeBinarySearchTree.py program. What is the
height of bst if we are shuffling the evenList?

c) What would be the shortest possible height for a binary
tree with 3,000 items?

After you have completed the height method and answered the above questions, raise your hand and explain
your answers.

Data Structures (CS 1520) Lab 9 Name:___________________________

Lab 9 - 2

le
ft

-s
ub

tr
ee

he
ig

ht
 o

f
8

ri
gh

t-
su

bt
re

e
he

ig
ht

 o
f

5

+1 for root

Leaf Node

Overall height = 1 + max(8, 5) = 9

Overall height = 1 + max(-1, -1)

emptyempty
right-subtreeleft-subtree
returns -1returns -1

 = 0

