Name:____

1. Consider the following sequential search (linear search) code:

Textbook's Listing 5.1	Faster sequential search code
<pre>def sequentialSearch(alist, item): """ Sequential search of unorder list """ pos = 0 found = False</pre>	<pre>def linearSearch(aList, target): """Returns the index of target in aList or -1 if target is not in aList"""</pre>
<pre>while pos < len(alist) and not found: if alist[pos] == item: found = True else: pos = pos+1</pre>	<pre>for position in range(len(aList)): if target == aList[position]: return position return -1</pre>
return found	

- a) What is the basic operation of a search?
- b) For the following aList value, which target value causes linearSearch to loop the fewest ("best case") number of times?

		1									
aList:	10	15	28	42	60	69	75	88	90	93	97

- c) For the above aList value, which target value causes linearSearch to loop the most ("worst case") number of times?
- d) For a successful search (i.e., target value in aList), what is the "average" number of loops?

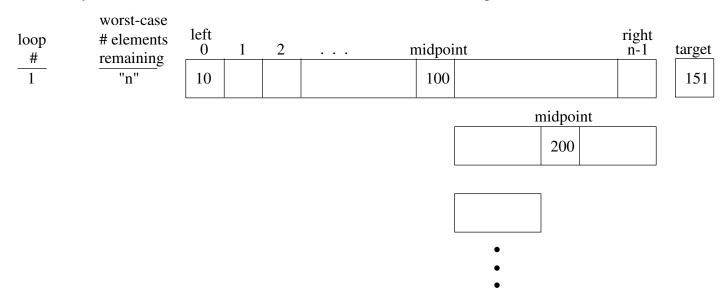
```
Textbook's Listing 5.2
                                                                     Faster sequential search code
                                                           def linearSearchOfSortedList(target, aList):
def orderedSequentialSearch(alist, item):
                                                               """Returns the index position of target in
    """ Sequential search of order list """
                                                              sorted aList or -1 if target is not in aList"""
    pos = 0
                                                               breakOut = False
    found = False
    stop = False
                                                               for position in range(len(aList)):
    while pos < len(alist) and not found and not stop:
                                                                   if target <= aList[position]:</pre>
        if alist[pos] == item:
                                                                       breakOut = True
            found = True
                                                                       break
        else:
            if alist[pos] > item:
                                                               if not breakOut:
                stop = True
                                                                   return -1
            else:
                                                               elif target == aList[position]:
                pos = pos+1
                                                                   return position
    return found
                                                               else:
                                                                   return -1
```

e) The above version of linear search assumes that alist is sorted in ascending order. When would this version perform better than the original linearSearch at the top of the page?

2. Consider the following binary search code:

Textbook's Listing 5.3	Faster binary search code
<pre>def binarySearch(alist, item): first = 0 last = len(alist)-1 found = False while first<=last and not found: midpoint = (first + last)//2</pre>	<pre>def binarySearch(target, lyst): """Returns the position of the target item if found, or -1 otherwise.""" left = 0 right = len(lyst) - 1</pre>
<pre>midpoint = (first + last)//2 if alist[midpoint] == item: found = True else: if item < alist[midpoint]: last = midpoint-1 else: first = midpoint+1</pre>	<pre>while left <= right: midpoint = (left + right) // 2 if target == lyst[midpoint]: return midpoint elif target < lyst[midpoint]: right = midpoint - 1</pre>
return found	else: left = midpoint + 1 return -1

a) "Trace" binary search to determine the worst-case basic total number of comparisons?



- b) What is the worst-case big-oh for binary search?
- c) What is the best-case big-oh for binary search?
- d) What is the average-case (expected) big-oh for binary search?
- e) If the list size is 1,000,000, then what is the maximun number of comparisons of list items on a successful search?
- f) If the list size is 1,000,000, then how many comparisons would you expect on an unsuccessful search?

Data Structures	Lecture 14	Name:
3. Hashing Motivation and Terminology:		

a) Sequential search of an array or linked list follows the same search pattern for any given target value being searched for, i.e., scans the array from one end to the other, or until the target is found.

If n is the number of items being searched, what is the average and worst case big-oh notation for a sequential search? average case O() worst case O()

b) Similarly, binary search of a sorted array (or AVL tree) always uses a fixed search strategy for any given target value. For example, binary search always compares the target value with the middle element of the remaining portion of the array needing to be searched.

If n is the number of items being searched, what is the average and worst case big-oh notation for a search? average case O(

worst case O(

Hashing tries to achieve average constant time (i.e., O(1)) searching by using the target's value to calculate where in the array/Python list (called the *hash table*) it should be located, i.e., each target value gets its own search pattern. The translation of the target value to an array index (called the target's *home address*) is the job of the *hash function*. A *perfect hash function* would take your set of target values and map each to a unique array index.

Set of Keys	Hash function		Hash Table A	rray
John Doe	hash(John Doe) = 6	0		
District Food	had (Dhilia Face) 2	1		
Philip East	hash(Philip East) = 3	2	Philip East	3-2939
Mark Fienup	hash(Mark Fienup) = 5	<i>4</i>	Fillip East	3-2939
wark i ienap	1	5	Mark Fienup	3-5918
Ben Schafer	hash(Ben Schafer) = 8	6	John Doe	3-4567
		7		
	>	8	Ben Schafer	3-2187
		9		
	1	0		

a) If n is the number of items being searched and we had a perfect hash function, what is the average and worst case big-oh notation for a search?

average case O() worst case O()

4. Unfortunately, perfect hash functions are a rarity, so in general many target values might get mapped to the same hash-table index, called a *collision*.

Collisions are handled by two approaches:

- *open-address* with some *rehashing* strategy: Each hash table home address holds at most one target value. The first target value hashed to a specify home address is stored there. Later targets getting hashed to that home address get rehashed to a different hash table address. A simple rehashing strategy is *linear probing* where the hash table is scanned circularly from the home address until an empty hash table address is found.
- *chaining, closed-address*, or *external chaining*: all target values hashed to the same home address are stored in a data structure (called a *bucket*) at that index (typically a linked list, but a BST or AVL-tree could also be used). Thus, the hash table is an array of linked list (or whatever data structure is being used for the buckets)

5. Consider the following examples using *open-address* approach with a simple rehashing strategy of *linear probing* where the hash table is scanned circularly from the home address until an empty hash table address is found.

Set of Keys	Hash function		Hash Table A	ray
John Doe	hash(John Doe) = 6	0		
		1		
Philip East	hash(Philip East) = 3	2		
		→ 3	Philip East	3-2939
Mark Fienup	hash(Mark Fienup) = 5	4		
		> 5	Mark Fienup	3-5918
Ben Schafer	hash(Ben Schafer) = 8	4 6	John Doe	3-4567
		7		
Andrew Berns	hash(Andrew Berns) = 3	→ 8	Ben Schafer	3-2187
(3-2740)		9		
Sarah Diesburg	hash(Sarah Diesburg) = 3	10		
(3-7395)				

a) Assuming open-address with linear probing where would Andrew Berns and then Sarah Diesburg be placed?

Common rehashing strategies include the following.

Rehash Strategy	Description
linear	Check next spot (counting circularly) for the first available slot, i.e.,
probing	(home address + (rehash attempt #)) % (hash table size)
quadratic	Check the square of the attempt-number away for an available slot, i.e.,
probing	(home address + ((rehash attempt #)² +(rehash attempt #))//2) % (hash table size), where the hash table size is
	a power of 2
double	Use the target key to determine an offset amount to be used each attempt, i.e.,
hashing	(home address + (rehash attempt #) * offset) % (hash table size), where the hash table size is a power
	of 2 and the offset hash returns an odd value between 1 and the hash table size

b) Assume quadratic probing, insert "Andrew Berns" and "Sarah Diesburg" into the hash table.

Set of Keys	<u>Hash function</u>	Hash Table Array
John Doe	hash(John Doe) = 6	Ben Schafer 3-2187
Philip East	hash(Philip East) = 3	
	→ 3	Philip East 3-2939
Mark Fienup	hash(Mark Fienup) = 5	
	5	Mark Fienup 3-5918
Ben Schafer	hash(Ben Schafer) = 0	John Doe 3-4567
	7	
Andrew Berns	hash(Andrew Berns) = 3	
(3-2740)	11(C1 Di-1) 2	
Sarah Diesburg (3-7395)	hash(Sarah Diesburg) = 3	

c) Assume double hashing, insert "Andrew Berns" and "Sarah Diesburg" into the hash table.

Set of Keys	<u>Hash function</u>	Hash Table Array
John Doe	hash(John Doe) = 6	Ben Schafer 3-2187
Philip East	hash(Philip East) = 3	
I IIIIp Last	11dsh(1 http East) = 3	Philip East 3-2939
Mark Fienup	hash(Mark Fienup) = 5	
	5	Mark Fienup 3-5918
Ben Schafer	hash(Ben Schafer) = 0	John Doe 3-4567
	7	
Andrew Berns (3-2740)	hash(Andrew Berns) = 3 rehash_offset(Andrew Berns) = 1	
Sarah Diesburg (3-7395)	hash(Sarah Diesburg) = 3 rehash_offset(Sarah Diesburg) = 3	

d) For the above double-hashing example, what would be the sequence of hashing and rehashing addresses tried for Sarah Diesburg if the table was full? For the above example, (home address + (rehash attempt #) * offset) % (hash table size) would be: (3 + (rehash attempt #) * 3) % 8

Rehash Attempt #	0	1	2	3	4	5	6	7	8	9	10
Address											

- e) Indicate whether each of the following rehashing strategies suffer from primary or secondary clustering.
- primary clustering keys mapped to a home address follow the same rehash pattern
- secondary clustering rehash patterns from initially different home addresses merge together

Rehash		Suffer	rs from:
Strategy	Description	primary clustering	secondary clustering
linear probing	Check next spot (counting circularly) for the first available slot, i.e., (home address + (rehash attempt #)) % (hash table size)		
quadratic probing	Check a square of the attempt-number away for an available slot, i.e., (home address + ((rehash attempt #)² +(rehash attempt #))/2) % (hash table size), where the hash table size is a power of 2		
double hashing	Use the target key to determine an offset amount to be used each attempt, i.e., (home address + (rehash attempt #) * offset) % (hash table size), where the hash table size is a power of 2 and the offset hash returns an odd value between 1 and the hash table size		

- 6. Let λ be the *load factor* (# item/hash table size). The average probes with **linear probing** for insertion or unsuccessful search is: $(\frac{1}{2})\left(1+\left(\frac{1}{(1-\lambda)^2}\right)\right)$. The average for successful search is: $(\frac{1}{2})\left(1+\left(\frac{1}{(1-\lambda)}\right)\right)$.
- a) Why is an unsuccessful search worse than a successful search?

The average probes with **quadratic probing** for insertion or unsuccessful search is: $\left(\frac{1}{1-\lambda}\right) - \lambda - \log_e(1-\lambda)$

The average probes with quadratic probing for successful search is: $1 - (\frac{\lambda}{2}) - \log_e(1 - \lambda)$

Consider the following table containing the average number probes for various load factors:

Probing		Load Factor, λ					
Type	Search outcome	0.25	0.5	0.67	0.8	0.99	
Linear	unsuccessful	1.39	2.50	5.09	13.00	5000.50	
Probing	successful	1.17	1.50	2.02	3.00	50.50	
Quadratic	unsuccessful	1.37	2.19	3.47	5.81	103.62	
Probing	successful	1.16	1.44	1.77	2.21	5.11	

b) Why do you suppose the "general rule of thumb" in hashing tries to keep the load factor between 0.5 and 0.67?

7. Allowing deletions from an open-address hash table complicates the implementation. Assuming linear probing we might have the following

Set of Keys	Hash function		Hash Table Array	
John Doe	hash(John Doe) = 6	0]
		1		
Philip East	hash(Philip East) = 3	2		
		. 3	Philip East 3-2939	
Mark Fienup	hash(Mark Fienup) = 5	4	Andrew Berns 3-2740	7
	*	5	Mark Fienup 3-5918	7
Ben Schafer	hash(Ben Schafer) = 8	6	John Doe 3-4567	7
		7	Sarah Diesburg 3-7395	7
Andrew Berns	hash(Andrew Berns) = 3	8	Ben Schafer 3-2187	1
		9		1
Sarah Diesburg	hash(Sarah Diesburg) = 3	10		

a) If "Mark Fienup" is deleted, how will we find Sarah Diesburg?

b) How might we fix this problem?