Data Structures Lecture 16 Name:

1. The Dictionary implementation using open-address hashing was the OpenAddrHashDict classin lab7.zip.

from entry import Entry

class OpenAddrHashbDict {object):
EMPTY = None # class variables shared by all objects of the class

DELETED = True

def init__ (self, capacity = 8, hash¥unction = hash,
linear = True):
self. table = [OpenAddrHashDict,EMPTY] * capacity
self. size =0
self, hash = hashFunction
self. homelIndex = -1
self. actualindex = -1
self, linear = linear
self._probeCount = 0

def getitem (self, key):
"Mrpeturns the value associated with key oz
returns None if key does not exist."""
if key in self:
return self.ﬁtable[self._actualindex].getValue()
else:
return None

def delitem (self, key):
"mrpemoves the entry associated with key.
if key in self:
self, table{self., actualindex] = CpenAddrHashbict.DELETED
self. size -=1

def _ setitem _{self, key, value}:
"Hnngerts an entry with key/value if key does not exist or
replaces the existing value with value if key exists."""
entry = Entry{key, value)
if kevy in self:
self. table{self, actualiadex] = entry
else:
self. tablelself. actuallndex] = entry
self, size +=1

def _contains_ (self, key}:
WinReturn True if key is in the dictionary; return False otherwise"”™
entry = Entry{key, None)
self. probeCount = ¢
Get the home index :
self,_homeIndex = abs(self. hash(key}} % len{self. table)
rehashAttempt = 9
index = self. homeIndex

Stop searching when an empty cell is encouatered
while rehashattempt < len(self. table}:
self. probeCount += 1
if self. table[index] == OpenAddrHashDict.EMPTY:
self, actualIndex = index
return False # An empty cell is found, so key not found
elif self. tablel[index] == eniry:
self. actualIndex = index
return True

Calculate the index and wrap around to first position if necessary
rehashAttempt += 1
if self. linear:

inde¥ = (self. homelndex + rehashattempt) % len(self. table}
else: # Quadratic probing

o

return False # tried all the slots in the hash table and did not find key

def len (self):
return self, size

def str (self):
resultstr = "*{"
for item in self._table:
if not item in (OpenAddrHashDict.EMPTY,OpenAddrHashDict.DELETED) :
resultStr = resultStr + " " + str{item)
return resultStr + * }7

def _iter_ (self):
THryterates over the keys of the dictionary

[LETR

index = (self._homelndex + (rehashittempt *% 21 rehashAttempt) // 2) % len{self.

_table)

a) Complete the iter method.

Lecture 16 Page 1

Data Structures Lecture 16 Name:

2. All simple soris consist of two nested loops where:
o the outer loop keeps track of the dividing line between the sorted and unsorted part with the sorted part growing
by one in size each iteration of the outer loop.
¢ the inner loop's job is to do the work to extend the §9§£§ part's size by one.

Initially, the sorted part is typically empty. The simple sorts differ in how their inner loops perform their job.
Selection sort is an example of a simple sort. Selection sott’s inner loop scans the unsorted part of the list to find the

maximum item. The maximum item in the unsorted part is then exchanged with the last unsorted item to extend the
sorted part by one item.

At the start of the first iteration of the outer loop, initial list is completely unsorted:
f Unsorted Part Empty Forted Part

L 1 2 3 4 5 6 7 8
myList: {{23)] 35| 20 40 90160 10| 50 45

e R SR
The inner loop scans the unsorted part and detelmmes that the index of the maximum item, maxindex = 4.
Sorted Part

Unsorted Part 1

0 1 2 3 4 5 6 7 8
myList: { 25| 3520 40] 90| 60| 10| 5045

maxIndex =4 lastUnsortedIndex = 8
After the inner Ioop (but still inside the outer loop), the item at maxIndex is exchanged with the item
at lastUnsortedIndex. Thus, extending the Sorted Part of the list by one item.

Unsorted Part Sorted Part

myList: [25] 35[20]40] 45] 60 10 50]90]

maxIndex =4 lasttInsortedIndex = 8

a) Write the code for the outer loop

Lo~ |as~4-(/ﬂ sotel Iﬁw&x A range U A (myéu:'gm{») ~|) O) .,,l)a

0
b) Write the code for the inner loop to scan the unsorted part of the list to determine the index of the maximum item

Max Tﬂﬂe e =0 _—
K‘Fo,»-%esﬂmﬂex A Mgl U]angmwf%{Lg St “f") 3

bt CbeetTdee) S mylypst Cmaeladey e
m‘%fnﬁw =2 tept ?f"n:ﬂe |

¢) Write the code to exchange the list 1tems at positions maxIndex i}ﬁ astUnsortedIndex.

Temp E é‘w{ (//1.5&95:‘1‘(; L.
f“YLf(v('rlas-FU K= my kst LMek, Tﬁﬁ{) ‘
L [ma }iﬁlmﬁﬁm %‘m
d) What is the big-oh notatlon t selection ort
KI&Q ¢)u:f? C@mﬂmef

{P(ﬂ] w?}! ;"“?@@@J Lecture 16 Page 2

Data Structures

Lecture 16

Name:

3. Bubble sort is another example of a simple sort. Bubble sort’s inner loop scans the unsorted part of the list
comparing adjacent items, If it finds adjacent items out of order, then it exchanges them. This causes the largest
item to “bubble” up to the “top” of the unsorted part of the list.

At the start of the first iteration of the outer loop, initial list is completely unsorted:

myList:

Unsorted Part Empity Sorted Part
0 1 2 3 4 5 6 7 8
25135{201401(90|60] 10| 50|45

The inner loop scans the unsorted part by compa,ring‘adj acent items and exchanging them if out of order.

mylist:

myList:

myList:

myList:

myList;

mylList:

Unsorted Part STrtGd Part
o 1 2 3 4 5 6 7 g ylastUnsortedindex=38
2513512040901 60| 10| 50|45
A A
in order, so don't exchange
4 4
out of order, so exchange
0 1 2 3 4 5 6 7 8
25120(35]40|90{60|10|50]45
A A
in order, so don't exchange
A A
in order, so don't exchange
out of ora-éi;-éa exchange
0 2 3 4 5 6 7 8
25120135140]60]90|10|50]45
r Y A
out of 01'215}; so exchange
0 1 2 3 4 5 6 T 3
25120135140 60] 10|90 5045
A A
out of or;i_éi';_s_;g exchange
0 1 2 3 4 5 6 7 8
2512013514060} 10150]90]45
A A
- outof orcL:lAéi‘;Aé‘(; exchange
0 1 2 3.4 5 6 7 8
25120(35/40([60| 10|50|45]|90
* Unsorted Part
fisorted tar Sorted Part

After the inner loop (but still inside the outer loop), there is nothing to do since the exchanges
occurred inside the inner loop.

a) What would be the worst-case big-oh of bubble sort?

b) What would be true if we scanned the unsorted part and didn’t need to do any exchanges?

Lecture 16 Page 3

bu Mf]l@ ‘gé)f*’ YL

Jod bebble Sort Q“*yéf%)f

‘QQW ‘ﬁ ¢ HUnsorte) Inflec 10 m‘m_é@ (lm(ﬁ\yé?r{)“’/! 0)“/),
Mado ASwag = False.

»Eo» e/ dex in /‘a/\?e CO) lﬁy%UM‘a#‘eJT@@r) [) :
LT testTalir T Lot i
Tene = mylist [les(To o7 '
My List [test T lee] = ppliltestl]
ML oLk +] = Homp
MedeASuwap = Troe
3 ot mafle A Swap:

Pé“’}" vre Worst

-*’ﬂ(fa,rs-‘]gww@vfﬁ B N N cé(/;’wf‘?w‘ﬁ

wj&’x(m!) |

4
I
E
N
t i
,%]
L

Data Structures Lecture 16 Name:

4. Another simple sort is called insertion sort. Recall that in a simple sort:
* the outer loop keeps track of the dividing line between the sorted and unsorted part with the sorted part growing
by one in size each iteration of the outer loop.
s the inner loop's job is to do the work to extend the sorted part's size by one.

After several iterations of insertion sort’s outer loop, a list might look like:

Sorted Part ' Unsorted Part

10 [20 36“\0“%‘45"%0 5] 50]90] o o o
“‘““‘g_:ﬁﬂ Heato Fagy

In insertion sort the inner-loop takes the "first unsorted item” (25 at index 6 ;{:(the above example) and "inserts" it
into the sorted part of the list "at the correct spot.” After 25 is inserted into the sorted part, the list would look like:

Sorted Part _____Unsorted Part

0 1 2 3 4 5 6 7 8
10120]25(35[40(45[60[50]90] ® © e

Code for insertion is given below:

def insertionSort (myList):
"nrRearranges the items in mylist so they are in ascending order"""

for firstUnsortedindex in range({l,leni{myList)):
itemToInsert = myList[firstUnsortedIndex]

testIndex = firstUnsortedindex - 1

while testindex >= 0 and myList[testIndex] > itemToInsert:
myTList{testIndex+l] = myList[testindex]
testIndex = testIndex - 1

Insert the itemTcInsert at the correct spot
mylList [testIndex + 1] = itemToInsert

RS o mylin

b) What initial arrange{nent of items causes the is the overall worst-case performance of insertion sort?

Y Nan bt { fin %f{gﬁf&?? z‘??«@ﬁ?ﬁ

¢) What is the worst-case O() notation for the number of item moves?
D (n

d) What is the worst-case) () n ajon for the number of item comparisons?

a) What is the purpose of the tesg
Pm KONT- WrR

e) What initial arrangement of 1tem causes the is the overall best-case performance of insertion sort?

O] asconds i Hilly

f) What is the best-case O () notation for insertion sort?

Lecture 16 Page 4

