1. Consider the partial TreeNode class and partial BinarySearchTree class.

class TreeNode:
 def __init__(self, key, val, left=None, right=None, parent=None):
 self.key = key
 self.payload = val
 self.leftChild = left
 self.rightChild = right
 self.parent = parent

 def hasLeftChild(self):
 return self.leftChild

 def hasRightChild(self):
 return self.rightChild

 def isLeftChild(self):
 return self.parent and \n self.parent.leftChild == self

 def isRightChild(self):
 return self.parent and \n self.parent.rightChild == self

 def isRoot(self):
 return not self.parent

 def isLeaf(self):
 return not (self.rightChild or self.leftChild)

 def hasAnyChildren(self):
 return self.rightChild or self.leftChild

 def hasBothChildren(self):
 return self.rightChild and self.leftChild

 def replaceNodeData(self, key, value, lc, rc):
 self.key = key
 self.payload = value
 self.leftChild = lc
 self.rightChild = rc
 if self.hasLeftChild():
 self.leftChild.parent = self
 if self.hasRightChild():
 self.rightChild.parent = self

 def __iter__(self):
 if self:
 if self.hasLeftChild():
 for elem in self.leftChild:
 yield elem
 yield self.key
 if self.hasRightChild():
 for elem in self.rightChild:
 yield elem

A BinarySearchTree object

root is None if size is 0

TreeNode objects

class BinarySearchTree:
 def __init__(self):
 self.root = None
 self.size = 0

 def length(self):
 return self.size

 def __len__(self):
 return self.size

 def __iter__(self):
 return self.root.__iter__()

 def __str__(self):
 """Returns a string representation of the tree rotated 90 degrees counter-clockwise""

 def strHelper(root, level):
 resultStr = """"
 if root:
 resultStr += strHelper(root.rightChild, level+1)
 resultStr += "\n" + str(root.key)
 resultStr += strHelper(root.leftChild, level+1)
 return resultStr

 return strHelper(self.root, 0)

strHelper(70, 0)

1 70
50
45
40
35
20
15
10
5

a) How do the BinarySearchTree __iter__ and __str__ methods work?
Data Structures (CS 1520)

More partial TreeNode class and partial BinarySearchTree class.

```python
class BinarySearchTree:
    ...
    def _contains_(self, key):
        if self._get(key, self.root):
            return True
        else:
            return False

    def get(self, key):
        if self.root:
            res = self._get(key, self.root)
            if res:
                return res.payload
            else:
                return None
        else:
            return None

    def _get(self, key, currentNode):
        if not currentNode:
            return None
        elif currentNode.key == key:
            return currentNode
        elif key < currentNode.key:
            return self._get(key, currentNode.leftChild)
        else:
            return self._get(key, currentNode.rightChild)

    def _getitem_(self, key):
        return self.get(key)

    def _setitem_(self, k, v):
        self.put(k, v)

    def put(self, key, val):
        if self.root:
            self._put(key, val, self.root)
        else:
            self.root = TreeNode(key, val)
            self.size = self.size + 1

    def _put(self, key, val, currentNode):
        if key < currentNode.key:
            if currentNode.hasLeftChild():
                self._put(key, val, currentNode.leftChild)
            else:
                currentNode.leftChild = TreeNode(key, val, currentNode, None)
        elif key > currentNode.key:
            if currentNode.hasRightChild():
                self._put(key, val, currentNode.rightChild)
            else:
                currentNode.rightChild = TreeNode(key, val, currentNode, None)
        else:
            currentNode.payload = val
            self.size += 1
```

A BinarySearchTree object

- **size**: integer
- **root**: TreeNode object

- TreeNode objects

b) The _get method is the "work horse" of BST search. It recursively walks `currentNode` down the tree until it finds `key` or becomes `None`.

In English, what are the base and recursive cases?

Base Cases:
1) Walk off branch of BST
2) Find node with key

Recursive:
1) Search left subtree
2) Search right subtree

c) What is the put method doing?

Check for:

d) Complete the recursive _put method.

e) Draw the "shape" of the BST after puts of: 50, 60, 30, 70, 90, 40, 65

f) If "n" items are in the BST, what is `put`'s: Best-case O(1)? Worst-case O(n)? Average-case O(1/2)?
2. More partial TreeNode class and partial BinarySearchTree class.

class BinarySearchTree:
 ...
 def delete(self, key):
 if self.size > 1:
 nodeToRemove = self._get(key, self.root)
 if nodeToRemove:
 self.remove(nodeToRemove)
 self.size = self.size - 1
 else:
 raise KeyError('Error, key not in tree')
 elif self.size == 1 and self.root.key == key:
 self.root = None
 self.size = self.size - 1
 else:
 raise KeyError('Error, key not in tree')

 def __delitem__(self, key):
 self.delete(key)

 def remove(self, currentTreeNode):
 if currentTreeNode.isLeaf(): #leaf
 if currentTreeNode == currentTreeNode.parent.leftChild:
 currentTreeNode.parent.leftChild = None
 else:
 currentTreeNode.parent.rightChild = None
 elif currentTreeNode.hasBothChildren(): #interior
 succ = currentTreeNode.findSuccessor()
 succ.spliceOut()
 currentTreeNode.key = succ.key
 currentTreeNode.payload = succ.payload
 else: # this node has one child
 if currentTreeNode.hasLeftChild():
 if currentTreeNode.isLeftChild():
 currentTreeNode.leftChild.parent = currentTreeNode.parent
 currentTreeNode.parent.leftChild = currentTreeNode.leftChild
 elif currentTreeNode.isRightChild():
 currentTreeNode.leftChild.parent = currentTreeNode.parent
 currentTreeNode.parent.rightChild = currentTreeNode.leftChild
 else:
 currentTreeNode.replaceNodeData(currentTreeNode.leftChild.key,
 currentTreeNode.leftChild.payload,
 currentTreeNode.leftChild.leftChild,
 currentTreeNode.leftChild.rightChild)
 else:
 if currentTreeNode.isLeftChild():
 currentTreeNode.rightChild.parent = currentTreeNode.parent
 currentTreeNode.parent.leftChild = currentTreeNode.rightChild
 elif currentTreeNode.isRightChild():
 currentTreeNode.rightChild.parent = currentTreeNode.parent
 currentTreeNode.parent.rightChild = currentTreeNode.rightChild
 else:
 currentTreeNode.replaceNodeData(currentTreeNode.rightChild.key,
 currentTreeNode.rightChild.payload,
 currentTreeNode.rightChild.leftChild,
 currentTreeNode.rightChild.rightChild)

 a) Update picture where we delete a leaf.
 b) Where in the code is each handled?
 c) Draw all pictures deleting all nodes with one child.
class TreeNode:
 ...
 def findSuccessor(self):
 succ = None
 if self.hasRightChild():
 succ = self.rightChild.findMin()
 else:
 if self.parent:
 if self.isLeftChild():
 succ = self.parent
 else:
 self.parent.rightChild = None
 succ = self.parent.findSuccessor()
 self.parent.rightChild = self
 return succ
 def findMin(self):
 current = self
 while current.hasLeftChild():
 current = current.leftChild
 return current
 def spliceOut(self):
 if self.isLeaf():
 if self.isLeftChild():
 self.parent.leftChild = None
 else:
 self.parent.rightChild = None
 else:
 if self.hasAnyChildren():
 if self.isLeftChild():
 self.parent.leftChild = self.leftChild
 else:
 self.parent.rightChild = self.leftChild
 self.leftChild.parent = self.parent
 else:
 if self.isLeftChild():
 self.parent.leftChild = self.rightChild
 else:
 self.parent.rightChild = self.rightChild
 self.rightChild.parent = self.parent
1. Consider the Binary Search Tree (BST):

a. What would need to be done to delete 32 from the BST?

b. What would need to be done to delete 9 from the BST?

c. What would be the result of deleting 50 from the BST? Hint: One technique when programming is to convert a hard problem into a simpler problem. Deleting a BST node that contains two children is a hard problem. Since we know how to delete a BST node with none or one child, we can convert “deleting a node with two children” problem into a simpler problem by overwriting 50 with another node’s value. Which nodes can be used to overwrite 50 and still maintain the BST ordering? 47 or 53.

d. Which node would the TreeNode’s findSuccessor method return for suc if we are deleting 50 from the BST?

2. When the findSuccessor method is called how many children does the self node have?

3. How could we improve the findSuccessor method?

4. When the spliceOut method is called from remove how many children could the self node have?

5. How could we improve the spliceOut method?
6. The shape of a BST depends on the order in which values are added (and deleted).
 a) What would be the shape of a BST if we start with an empty BST and insert the sequence of values:
 \[70, 90, 80, 5, 30, 110, 95, 40, 100 \]

 b) If a BST contains \(n \) nodes and we start searching at the root, what would be the worst-case big-oh \(O() \) notation for a successful search? (Draw the shape of the BST leading to the worst-case search)

7. We could store a BST in an array like we did for a binary heap, e.g. root at index 1, node at index \(i \) having left child at index \(2 \times i \), and right child at index \(2 \times i + 1 \).
 a) Draw the above BST (after inserting: 70, 90, 80, 5, 30, 110, 95, 40, 100) stored in an array (leave blank unused slots)

 \[
 \begin{array}{cccccccccc}
 70 & 50 & 90 & 30 & 80 & 110 & | & 40 & | & 95 & | & | & | & | & | & | & | & | & | & 24 & 100
 \end{array}
 \]

 b) What would be the worst-case storage needed for a BST with \(n \) nodes?

 \[2^n - 1 \]

8. a) If a BST contains \(n \) nodes, draw the shape of the BST leading to best, successful search in the worst case.

 b) What is the worst-case big-oh \(O() \) notation for a successful search in this “best” shape BST?

\[\log n \]
1. An AVL Tree is a special type of Binary Search Tree (BST) that it is *height balanced*. By height balanced I mean that the height of every node's left and right subtrees differ by at most one. This is enough to guarantee that an AVL tree with \(n \) nodes has a height no worse than \(O(1.44 \log_2 n) \). Therefore, insertions, deletions, and search are worst case \(O(\log_2 n) \). An example of an AVL tree with integer keys is shown below. The height of each node is shown.

![AVL Tree Example](image)

Each AVL-tree node usually stores a *balance factor* in addition to its key and payload. The balance factor keeps track of the relative height difference between its left and right subtrees, i.e., \(\text{height(left subtree)} - \text{height(right subtree)} \).

a) Label each node in the above AVL tree with one of the following *balance factors*:
 - 0 if its left and right subtrees are the same height
 - 1 if its left subtree is one taller than its right subtree
 - -1 if its right subtree is one taller than its left subtree

b) We start a `put` operation by adding the new item into the AVL as a leaf just like we did for Binary Search Trees (BSTs). Add the key 90 to the above tree.

c) Identify the node "closest up the tree" from the inserted node (90) that no longer satisfies the height-balanced property of an AVL tree. This node is called the *pivot node*. Label the pivot node above (60)

d) Consider the subtree whose root is the pivot node. How could we rearrange this subtree to restore the AVL height balanced property? (Draw the rearranged tree below)