
1. BST, AVL trees, and hash tables can all be used to implement a dictionary ADT.

NANA1530139,999Height of resulting tree

0.0390.0440.0620.0790.06038.100Total search time

0.0740.0640.1950.1190.20547.785Total add/put time

Closed Addr.

(Chaining)

Open Addr.

(Quadratic)

AVL TreeBSTAVL TreeBST

Order did not matter

(Hash table sizes 215 = 32K)

Items added in random

order

Items added in sorted

order

Dictionary Successful Search Comparisons with 10,000 integer items (Time in seconds)

a) The puts of these 10,000 randomly ordered items into the BST took 0.119 seconds and 0.195 seconds into the

AVL tree. Why did the BST puts take less time eventhough the final height was 30 vs. a final AVL tree height of

15?

b) With a very, very poor hash function or very, very bad choice of keys, then all keys could hash to the same home

address.

� What would be the worst-case big-oh of open-address hashing with quadratic probing?

� What would be the worst-case big-oh of chaining using a linked list at each home address (i.e., ChainingDict)?

� What would be the worst-case big-oh of chaining using an AVL tree at each home address?

AVL Tree containing

0

1

2

3

4

5

Hash Table

.

.

.

all "n" items in the
hash table

2. The data structures we have discussed so far are all in-memory, i.e., data is stored in main/RAM memory. Data

can also be stored on secondary storage in a file (e.g., moiveData.txt file). Currently, most secondary storage

consists of hard-disks.

a) Complete the following table comparing main/RAM memory vs. hard-disk:

Average access time

Size on a typical desktop computer

Solid-State DriveHard-disk DriveMain/RAM memoryCriteria

b) Which criterion seems to be the most important difference between the main and secondary memories?

Data Structures (CS 1520) Lecture 24 Name:_________________

Lecture 24 Page 1

0

0

0

2

2

2

1

1

1

0

0

0

1

1

1

2

2

3

3

3

4

4

4

5

5

5

6

6

6

 7

 7

 7

Sector #

Track #

0

1

3

Surface #

.

..

2

2

S-2

S-1

R/W Heads

0
1 2

3

4 5 6
7 8

9 10 11

13 14
15 12

16
17 18

19

8-15 are on
surface 1
(on the bottom
 of the disk)

 Logical View of Disk as Linear Collection of Blocks

0 1 2

(track #, surface #, sector #) to

(0,0,0) (0,0,1) (0,0,2)

 Linear block # mapping

All of cylinder 0 All of cylinder 1

track # surface # sector #Bits of linear block # :

. . .

3. Disk-access time = (seek time) + (rotational delay) + (date transfer time). How is each component of the

disk-access time effected by increasing the disk's RPMs (revolutions per minute)?

b) If we want fast access to a collection of sectors, where can we place them to minimize seek time and rotational

delay?

Data Structures (CS 1520) Lecture 24 Name:_________________

Lecture 24 Page 2

User Program - HLL programming language make system calls to OS to:

1. open file - establish a link between file variable and file for either reading, writing, or both

2. access file - read or write one piece of data at a time (e.g., char., record, etc.)

3. close file - flush changes to disk

Operating System - manage and control access to secondary storage through its file system which contains

information about every file: location on disk, ownership and security/protection

OS maintains free disk space "list"

OS views disk as linear sequence of blocks (block 0, block 1, etc.), but assumes closeness

in block # means close with respect to access time.

Secondary Storage - accepts R/W requests from OS for block# and maps block# to internals physical address

 Device (e.g., (track #, surface #, sector #) - more complex than above picture!)

OS buffers some blocks in memory to improve efficiency

.

.

.

Kinds of File Access:

� serial/sequential files - open at the beginning and read sequentially from beginning to end linearly

� random-access files - “seek" to any position by specifying a byte-offset from the beginning of the file, record #,

etc.

� random-access of a record by key

Implementation of Files on Disk- how are blocks allocated?

4. non-contiguous - scattered across linear address space of OS and disk

linked-list of blocks on disk

File system meta-data

for file

. . .

a) What types of file access are supported efficiently?

b) How easy is it for the file to grow in size?

5. contiguous - sequential collection of blocks from OS linear view of disk

File system meta-data

for file 10 1412 1611 1513 1817

10

a) What types of file access are supported efficiently?

b) How easy is it for the file to grow in size?

Data Structures (CS 1520) Lecture 24 Name:_________________

Lecture 24 Page 3

6. file descriptor blocks - list of blocks hold the address of the physical location of data blocks

File system meta-data

for file
2nd data

1st data

3rd data

0th data

block in

block in

block in

block in

file

file

file

file

file descriptor

block(s)

pointer

to next

file descriptor

block

a) What types of file access are supported efficiently?

b) How easy is it for the file to grow in size?

7. To implement "random-access of a record by key" in a file how might we use hashing?

8. To implement "random-access of a record by key" in a file why would an AVL tree not work well?

Data Structures (CS 1520) Lecture 24 Name:_________________

Lecture 24 Page 4

9. A B+ Tree is a multi-way tree (typically in the order of 100s children per node) used primarily as a file-index

structure to allow fast search (as well as insertions and deletions) for a target key on disk. Two types of pages (B+

tree "nodes") exist:

� Data pages - which always appear as leaves on the same level of a B+ tree (usually a doubly-linked list too)

� Index pages - the root and other interior nodes above the data page leaves. Index nodes contain some minimum

and maximum number of keys and pointers bases on the B+ tree's branching factor (b) and fill factor. A 50%

fill factor would be the minimum for any B+ tree. All index pages must have ≤ # child ≤ b, except the root«b/2»
which must have at least two children.

Consider an B+ tree example with b = 5.

 80

 40

 8 40 65 80 90 120 130

 90 65

 25 60 70 88 95 125 171

 120

 72

 130

a) How would you find 88?

b) The insert algorithm for a B+ tree is summarized by the below table. Where would you insert 50, 100, 105, 110,

180, 200, 210?

1. Split data page with records < middle key going in left data page and records ≥

middle key going in right data page.

2. Adding middle key to parent index page causes it to split with keys < middle key

going into the left index page, keys > middle key going in right index page, and the

middle key inserted into the next higher level index page. If the next higher index

page is full continue to splitting index pages up the B+ tree as necessary.

YesYes

1. Split data page with records < middle key going in left data page and records ≥

middle key going in right data page.

2. Place middle key in index page in sorted order with the pointer immediately to its

left pointing to the left data page and the pointer immediately to its right pointing to

the right data page.

NoYes

Place record in sorted position in the appropriate data page.NoNo

Parent

Index Page

Full?

Data Page

Full?
insertion Algorithm

Situation

Data Structures (CS 1520) Lecture 24 Name:_________________

Lecture 24 Page 5

c) For a B+ tree with a branch factor 201, what would be the worst case height of the tree if the number of keys was

1,000,000,000,000?

10. The deletion algorithm for a B+ tree is summarized by the below table.

1. Combine data page and its sibling.

2. Adjusting the index page to reflect the change causes it to drop below the fill

factor, so combine the index page with its sibling.

3. Continue combining the next higher level index pages until you reach an index

page with the correct fill factor or you reach the root index page.

YesYes

1. Combine data page and its sibling. Change the index page to reflect the change.NoYes

Delete record from the data page. Shifting records with larger keys to left to fill in the

hole. If the deleted key appears in the index page, use the next key to replace it.

NoNo

Parent Index

Page Below

Fill Factor?

Data Page

Below Fill

Factor?

deletion Algorithm

Situation

Consider an B+ tree example with b = 5 and 50% fill factor. Delete 89, 65, and 88. What is the resulting B+ tree?

 80

 40

 8 40 65 80 90 120

 90 65

 25 60 70 88 89 95 125

 120

 72

Data Structures (CS 1520) Lecture 24 Name:_________________

Lecture 24 Page 6

