
1. Section 6.6 discusses a very “non-intuitive”, but powerful list/array-based approach to implement a priority queue,

call a binary heap. The list/array is used to store a complete binary tree (a full tree with any additional leaves as far left

as possible) with the items being arranges by heap-order property, i.e., each node is ≤ either of its children. An

example of a min heap “viewed” an a complete binary tree would be:

 6

15 10

114 20 5020

300 125 117

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

1 2 3 4 5 6 7 8 9 100

 not
used 6 15 10 114 20 20 50 300 125 117

Python List actually used
to store heap items

a) For the above heap, the list/array indexes are indicated in []'s. For a node at index i, what is the index of:

� its left child if it exists:

� its right child if it exists:

� its parent if it exists:

b) What would the above heap look like after inserting 13 and then 3? (show the changes on above tree)

General Idea of insert(newItem):

� append newItem to the end of the list (easy to do, but violates heap-order property)

� restore the heap-order property by repeatedly swapping the newItem with its parent until it percolates to correct spot

c) What is the big-oh notation for inserting a new item in the heap?

d) Complete the code for the percUp method used by insert.

class BinHeap:

 def __init__(self):

 self.heapList = [0]

 self.currentSize = 0

 def percUp(self,currentIndex):

 parentIndex =

 while

 def insert(self,k):

 self.heapList.append(k)

 self.currentSize = self.currentSize + 1

 self.percUp(self.currentSize)

Data Structures (CS 1520) Lecture 7 Name:_________________

Lecture 7 - Page 1

2. Now let us consider the delMin operation that removes and returns the minimum item.

 6

15 10

114 20 5020

300 125 117

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10]

1 2 3 4 5 6 7 8 9 100

 not
used 6 15 10 114 20 20 50 300 125 117

Python List actually used
to store heap items

a) What item would delMin remove and return from the above heap?

b) What is the quickest way to fill the hole left by delMin?

c) What new problem does this cause?

General Idea of delMin():

� remember the minimum value so it can be returned later (easy to find - at index 1)

� copy the last item in the list to the root, delete it from the right end, decrement size

� restore the heap-order property by repeatedly swapping this item with its smallest child until it percolates down to

the correct spot

� return the minimum value

d) What would the above heap look like after delMin? (show the changes on above tree)

e) Complete the code for the percDown method used by delMin.

f) What is the big-oh notation for delMin?

Data Structures (CS 1520) Lecture 7 Name:_________________

Lecture 7 - Page 2

class BinHeap:

.

.

.

 def minChild(self,i):

 if i * 2 + 1 > self.currentSize: # if only left child

 return i * 2

 else:

 if self.heapList[i * 2] < self.heapList[i * 2 + 1]:

 return i * 2

 else:

 return i * 2 + 1

 def delMin(self):

 retval = self.heapList[1]

 self.heapList[1] = self.heapList[self.currentSize]

 self.currentSize = self.currentSize - 1

 self.heapList.pop()

 self.percDown(1)

 return retval

 def percDown(self,currentIndex):

Once we have a working BinHeap, then implementing the PriorityQueue class using a BinHeap is a piece of cake:

File: priority_queue.py

from binheap import BinHeap

class PriorityQueue:

 def __init__(self):

 self._heap = BinHeap()

 def isEmpty(self):

 return self._heap.isEmpty()

 def enqueue(self, item):

 self._heap.insert(item)

 def dequeue(self):

 return self._heap.delMin()

 def size(self):

 return self._heap.size()

 def __str__(self):

 return str(self._heap)

3. A “list” is a generic term for a sequence of items in a linear arrangement. Unlike stacks, queues and deques access

to list items is not limited to either end, but can be from any position in the list. The general terminology of a list is

illustrated by:

 "Abstract view of a list" 'w' 'a' 'y' 'c'

[0] [1] [2] [3]

head tail

index/position in the list

There are three broad categories of list operations that are possible:

� index-based operations - the list is manipulated by specifying an index location, e.g.,

myList.insert(3, item) # insert item at index 3 in myList

� content-based operations - the list is manipulated by specifying some content (i.e., item value), e.g.,

myList.remove(item) # removes the item from the list based on its value

� cursor-base operations - a cursor (current position) can be moved around the list, and it is used to identify list

items to be manipulated, e.g.,

myList.first() # sets the cursor to the head item of the list

myList.next() # moves the cursor one position toward the tail of the list

myList.remove() # deletes the second item in the list because that’s where the cursor is currently located

The following table summarizes the operations from the three basic categories on a list, L:

L.hasNext()

L.next()

L.hasPrevious()

L.previous()

L.first()

L.last()

L.insert(item)

L.replace(item)

L.remove()

L.add(item)

L.remove(item)

L.search(item) #return Boolean

i = L.index(item)

L.insert(index, item)

item = L[index]

L[index] = newValue

L.pop(index)

cursor-based operationsContent-based operationsIndex-based operations

Built-in Python lists are unordered with a mixture of index-based and content-based operations. We know they are

implemented using a contiguous block of memory (i.e., an array). The textbook talks about an unordered list ADT,

and a sorted list ADT which is more content-based. Both are implemented using a singly-linked list.

a) Why would a singly-linked list be a bad choice for implementing a cursor-based list ADT?

Data Structures (CS 1520) Lecture 7 Name:_________________

Lecture 7 - Page 3

>>> q = PriorityQueue()

>>> print(q)

[]

>>> q.enqueue(5)

>>> q.enqueue(1)

>>> q.enqueue(7)

>>> print(q)

[1, 5, 7]

>>> q.dequeue()

1

>>> print(q)

[5, 7]

