
Question 1. (4 points) Consider the following Python code.

for j in range(n):

 i = 1

 while i < n:

 print(i, j)

 i = i * 2

What is the big-oh notation Ο () for this code segment in terms of n?

Question 2. (4 points) Consider the following Python code.

for i in range(n):

 k = n

 while k > 1:

 k = k // 2

 print(k)

 for j in range(n):

 print(i, j)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 3. (4 points) Consider the following Python code.

def main(n):

 for i in range(n):

 doSomething(n)

def doSomething(n):

 for j in range(n*n):

 doMore(n)

def doMore(n):

 for k in range(n*n):

 print(k)

main(n)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 4. (6 points) Suppose a Ο (n4) algorithm takes 10 second when n = 1000. How long would the

algorithm run when n = 10,000?

Question 5. (8 points) Why should a method/function having a "precondition" raise an exception if the

precondition is violated?

Fall 2018 Data Structures - Test 1 Name: ______________________

1

Question 6. A FIFO queue allows adding a new item at the rear using an enqueue operation, and removing an item

from the front using a dequeue operation. One possible implementation of a queue would be to use a built-in

Python list to store the queue items such that

� the front item is always stored at index 0,

� the rear item is always at index len(self._items) -1 or -1

 'a' 'b' 'c' 'd'

0 1 2 3

 _items:

Python List Object

rear

Queue Object

front

a) (6 points) Complete the expected big-oh O (), for each Queue operation, assuming the above implementation.

Let n be the number of items in the queue.

size__str__peek - returns front item

without removing it

dequeueenqueue(item)isEmpty

b) (8 points) Complete the method for the dequeue operation, including the precondition check to raise an

exception if it is violated.

 def dequeue(self):

 """Removes and returns the Front item of the Queue

 Precondition: the Queue is not empty.

 Postcondition: Front item is removed from the Queue and returned"""

c) (8 points) Complete the method for the __str__ operation,

 def __str__(self):

 """ Returns a string representation of items from front to rear. """

 strResult = "(front) "

Fall 2018 Data Structures - Test 1 Name: ______________________

2

Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a

complete binary tree (a full tree with any additional leaves as far left as possible) with the items being arranges by

heap-order property, i.e., each node is ≤ either of its children. An example of a min heap “viewed” as a complete

binary tree would be:

 12

23 17

 2534 9060

120 44 84

 84

 31 28 98

 98

 96

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [13][11][10] [14][12]

1 2 3 4 5 6 7 8 9 10 11 12 13 140

 not
used 12 23 17 34 25 60 96 90 120 44 28 31

Python List actually used
to store heap items

a) (3 points) For the above heap, the list indexes are indicated in []'s. For a node at index i, what is the index of:

� its left child if it exists:

� its right child if it exists:

� its parent if it exists:

b) (7 points) What would the above heap look like after inserting 40 and then 20 (show the changes on above tree)

Now consider the delMin operation that removes and returns the minimum item.

 12

23 17

 2534 9060

120 44 84 31 28 98 96

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [13][11][10] [14][12]

c) (2 point) What item would delMin remove and return from the above heap?

d) (7 points) What would the heap look like after delMin? (show the changes on tree in the middle of the page)

e) (6 points) Performing 20,000 inserts into an initially empty binary heap takes 0.23 seconds. Now, if we

perform 20,000 delMin operations, it takes 0.39 seconds. Explain why 20,000 delMin operations take more

time than the 20,000 insert operations?

Fall 2018 Data Structures - Test 1 Name: ______________________

3

Question 8. The Node2Way and Node classes can be used to dynamically create storage for each new item added to

a Deque using a doubly-linked implementation as in:

DoublyLinkedDeque Object

_front:

_rear:

 _size: 4

previous data next previous data next previous data next previous data next

 'a' 'b' 'c' 'd'

a) (6 points) Complete the big-oh expected O (), for each DoublyLinkedDeque operation, assuming the above

implementation. Let n be the number of items in the DoublyLinkedDeque.

__str__removeFrontaddFrontremoveRearaddRearisEmpty

b) (16 points) Complete the addRear method for the above DoublyLinkedDeque implementation.

c) (5 points) Why would using singly-linked nodes (i.e., only Node objects with data and next) to implement the

Deque lead to poor performance (i.e., cause some Deque operations to have worse big-oh notations)? Justify your

answer.

Fall 2018 Data Structures - Test 1 Name: ______________________

4

class DoublyLinkedDeque(object):

 """ Doubly-linked list based deque implementation."""

 def __init__(self):

 self._size = 0

 self._front = None

 self._rear = None

 def addRear(self, newItem):

 """ Adds the newItem to the rear of the Deque.

 Precondition: none """

class Node:

 def __init__(self,initdata):

 self.data = initdata

 self.next = None

 def getData(self):

 return self.data

 def getNext(self):

 return self.next

 def setData(self,newdata):

 self.data = newdata

 def setNext(self,newnext):

 self.next = newnext

from node import Node

class Node2Way(Node):

 def __init__(self,initdata):

 Node.__init__(self, initdata)

 self.previous = None

 def getPrevious(self):

 return self.previous

 def setPrevious(self,newprevious):

 self.previous = newprevious

