
Question 1. (4 points) Consider the following Python code.

i = n

while i > 1:

 print(i)

 i = i // 2

for j in range(n * n):

 print(j)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 2. (4 points) Consider the following Python code.

for i in range(n):

 for j in range(n):

 k = 1

 while k < n:

 print(i, j, k)

 k = k + 3

What is the big-oh notation Ο () for this code segment in terms of n?

Question 3. (4 points) Consider the following Python code.

def main(n):

 i = n

 while i > 0:

 for j in range(n):

 doSomething(n)

 i = i // 2

def doSomething(n):

 for k in range(n):

 doMore(n*n)

def doMore(n):

 for j in range(n):

 print(j)

main(n)

What is the big-oh notation Ο () for this code segment in terms of n?

Question 4. (5 points) Suppose a Ο (n5) algorithm takes 1 second when n = 1000. How long would the algorithm

run when n = 10,000?

Question 5. (8 points) Why should medium/large size programs be written using function definitions instead of a

single block of monolithic code written at the top-level (i.e., all statements written outside of any function)?

Spring 2018 Data Structures - Test 1 Name: ______________________

1

Question 6. A Deque (pronounced “Deck”) is a linear data structure which behaves like a double-ended queue, i.e.,

it allows adding or removing items from either the front or the rear of the Deque. One possible implementation of

a Deque would be to use a built-in Python list to store the Deque items such that

� the rear item is always stored at index 0,

� the front item is always at index len(self._items) -1 or -1

 'a' 'b''c''d'

0 1 2 3

 _items:

Python List Object

rear

Deque Object

front

a) (6 points) Complete the big-oh O (), for each Deque operation, assuming the above implementation. Let n be

the number of items in the Deque.

sizeremoveFrontaddFrontremoveRearaddRearisEmpty

b) (9 points) Complete the code for the addRear method, including any precondition check needed by raising an

exception if it is violated.

 def addRear(self, newItem):

 """Adds the newItem to the rear of the Deque

 Precondition: none

 Postcondition: newItem has been added to the rear of the Deque"""

c) (10 points) Complete the method for the __str__ operation.

 def __str__(self):

 """Returns the string representation of the Deque.

 Precondition: none

 Postcondition: Returns a string representation of the Deque from the

 front item thru the rear item with a blank space between each item."""

 resultStr = "(front) "

Spring 2018 Data Structures - Test 1 Name: ______________________

2

Question 7. Consider the binary heap approach to implement a priority queue. A Python list is used to store a

complete binary tree (a full tree with any additional leaves as far left as possible) with the items being arranges by

heap-order property, i.e., each node is ≤ either of its children. An example of a min heap “viewed” as a complete

binary tree would be:

 4

13 17

 2534 9080

120 44 31 28 96

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [11][10] [12]

1 2 3 4 5 6 7 8 9 10 11 120

 not
used 4 13 17 34 25 80 96 90 120 44 28 31

Python List actually used
to store heap items

a) (3 points) For the above heap, the list indexes are indicated in []'s. For a node at index i, what is the index of:

� its left child if it exists:

� its right child if it exists:

� its parent if it exists:

b) (7 points) What would the above heap look like after inserting 10 and then 20 (show the changes on above

tree)

Now consider the delMin operation that removes and returns the minimum item.

 4

13 17

 2534 9080

120 44 31 28 96

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [11][10] [12]

c) (2 point) What item would delMin remove and return from the above heap?

d) (7 points) What would the heap look like after delMin? (show the changes on tree in the middle of the page)

e) (6 points) What is the big-oh notation for the delMin operation? (EXPLAIN YOUR ANSWER)

Spring 2018 Data Structures - Test 1 Name: ______________________

3

Question 8. The Node class can be used to dynamically create storage for each new item added to a Stack using a

singly-linked implementation as in:

LinkedStack Object

_bottom:

_top:

 _size: 4
data next data next data next data next

 'd' 'c' 'b' 'a'

Node Objects

a) (6 points) Complete the big-oh O (), for each LinkedStack operation, assuming the above implementation.

Let n be the number of items in the LinkedStack.

__str____init__push(item)popsizeisEmpty

b) (12 points) Complete the push method for the above LinkedStack implementation.

c) (7 points) Suggest an improvement to the above implementation to speed up some of the stack operations

enough to change their big-oh notation? (Justify your answer)

Spring 2018 Data Structures - Test 1 Name: ______________________

4

class LinkedStack(object):

 """ Singly-linked list based Stack implementation."""

 def __init__(self):

 self._size = 0

 self._bottom = None

 self._top = None

 def push(self, item):

 """ Adds the item to the top of the Stack.

 Precondition: none """

.

class Node:

 def __init__(self,initdata):

 self.data = initdata

 self.next = None

 def getData(self):

 return self.data

 def getNext(self):

 return self.next

 def setData(self,newdata):

 self.data = newdata

 def setNext(self,newnext):

 self.next = newnext

