
Data Structures - Test 2

Question 1. (10 points) What is printed by the following program? Output:

def recFn(myStr, index):

 print(myStr[index], index)

 if index < 4:

 return "Hi"

 else:

 return recFn(myStr, index - 3) + myStr[index]

 (**)

print("result =",recFn("0123456789", 8))

 (*)

Question 2. Write a recursive Python function to calculate (where n is an integer) based on the formulas:an

, for n = 0a0 = 1

, for n = 1a1 = a

, for even n > 1 (recall we can check for this in Python by n % 2 == 0)an = an/2an/2

, for odd n > 1an = a(n−1)/2a(n−1)/2a

a) (12 points) Complete the below powerOf recursive function

def powerOf(a, n):

b) (8 points) For the above recursive powerOf function, complete the calling-tree for powerOf (2, 6).

powerOf(2,6)

powerOf(2,3) powerOf(2,3)

c) (5 points) Suggest a way to speedup the above powerOf function.

Spring 2015 Name: ______________________

1

Run-time Stack

myStr:

index: 8

(*)

Initial
call-frame
of recFn

"0123456789"
ret. addr:

Question 3. Consider the following insertion sort which sorts in ascending order, but builds the sorted part on the right.

def insertionSort(myList):

 myListLength = len(myList)

 for lastUnsortedIndex in range(len(myList)-2, -1, -1):

 itemToInsert = myList[lastUnsortedIndex]

 testIndex = lastUnsortedIndex + 1

 while testIndex < myListLength and myList[testIndex] < itemToInsert:

 myList[testIndex-1] = myList[testIndex]

 testIndex = testIndex + 1

 myList[testIndex - 1] = itemToInsert

a) (5 points) What is the purpose of the testIndex < myListLength while-loop comparison?

Consider the modified insertion sort code that eliminates the testIndex < myListLength while-loop comparison, but

adds the bold code.

def insertionSortB(myList):

 myList.append(max(myList))

 for lastUnsortedIndex in range(len(myList)-2, -1, -1):

 itemToInsert = myList[lastUnsortedIndex]

 testIndex = lastUnsortedIndex + 1

 while myList[testIndex] < itemToInsert:

 myList[testIndex-1] = myList[testIndex]

 testIndex = testIndex + 1

 myList[testIndex - 1] = itemToInsert

 myList.pop()

b) (5 points) Explain how the bolded code in the modified insertion sort code above allows for the elimination of the

testIndex < myListLength while-loop comparison.

Consider the following timing of the above two insertion sorts on lists of 10000 elements.

6.5 seconds7.3 secondsRandomly ordered list of 10000 numbers

0.004 seconds0.004 secondsAlready in ascending order: 1, 2, ..., 9999, 10000

12.6 seconds14.1 secondsSorted in descending order: 10000, 9999, ..., 2, 1

insertionSortB - modified

version in middle of the page

insertionSort - at the top of page

Initial arrangement of list before sorting

c) (5 points) Explain why insertionSortB (modified version in middle of page) out performs the original

insertionSort.

d) (5 points) In either version, why does sorting the randomly order list take about halve the time of sorting the

initially descending ordered list?

Spring 2015 Name: ______________________

2

Question 4. In class we discussed the following bubble sort code which sorts in ascending order (smallest to largest)

and builds the sorted part on the right-hand side of the list, i.e.:

 Unorted Part Sorted Part

scan unsorted part
from left to right

def bubbleSort(myList):

 for lastUnsortedIndex in range(len(myList)-1,0,-1):

 # scan the unsorted part at the beginning of myList

 for testIndex in range(lastUnsortedIndex):

 # if we find two adjacent items out of ascending order, then switch them

 if myList[testIndex] > myList[testIndex+1]:

 temp = myList[testIndex]

 myList[testIndex] = myList[testIndex+1]

 myList[testIndex+1] = temp

(20 points) For this question write a variation of the above bubble sort that:

� sorts in descending order (largest to smallest)

� builds the sorted part on the left-hand side of the list, i.e.,

 Sorted Part Unsorted Part

scan unsorted part
from right to left

def bubbleSortVariation(myList):

Spring 2015 Name: ______________________

3

Question 5. Recall the common rehashing strategies we discussed for open-address hashing:

Check the square of the attempt-number away for an available slot, i.e.,

[home address + ((rehash attempt #)2 +(rehash attempt #))/2] % (hash table size), where the hash table size is

a power of 2. Integer division is used above

quadratic

probing

DescriptionStrategy

a) (8 points) Insert “Paul Gray” and then “Sarah Diesburg” using Linear (on left) and Quadratic (on right) probing.

John DoeJohn Doe

hash(John Doe) = 7

Philip EastPhilip East

hash(Philip East) = 3

Mark FienupMark Fienup

hash(Mark Fienup) = 6

Ben SchaferBen Schafer

hash(Ben Schafer) = 0

hash(Paul Gray) = 3

hash(Sarah Diesburg) = 3

Hash functionHash Table with Linear Probing Hash Table with Quad. Probing

00

11

22

33

44

55

66

77

b) (7 points) Explain why both linear and quadratic probing both suffer from primary clustering?

Question 6. (10 points) The general idea of Quick sort is as follows:

� Select a “random” item in the unsorted part as the pivot

� Rearrange (partition) the unsorted items as shown in

diagram on right:

� Quick sort the unsorted part to the left of the pivot

� Quick sort the unsorted part to the right of the pivot

Explain why the worst-case performance is O(n2).

Spring 2015 Name: ______________________

4

Pivot

Pivot Index

ItemAll items < to Pivot All items >= to Pivot

