\qquad

Data Structures - Test 2

Question 1. (10 points) What is printed by the following program? Output:

```
def recFn(a, b):
    print( a, b )
    if a == b:
        return b
    elif a > b:
        return a
    else:
        return a + recFn(a + 2,b - 2) + b
                        (**)
print("Result = ", recFn(-2, 8))
    (*)
```

Question 2. Write a recursive Python function to calculate a^{n} (where n is an integer) based on the formulas:

$$
\begin{array}{ll}
a^{0}=1, & \text { for } \mathrm{n}=0 \\
a^{1}=a, & \text { for } \mathrm{n}=1 \\
a^{n}=a^{n / 2} a^{n / 2}, & \text { for even } \mathrm{n}>1 \\
a^{n}=a^{(n-1) / 2} a^{(n-1) / 2} a, & \text { for odd } \mathrm{n}>1
\end{array} \quad(\text { recall we can check for this in Python by } \mathrm{n} \% 2==0)
$$

a) (8 points) Complete the below power $O f$ recursive function def powerOf(a, n):
b) (7 points) For the above recursive powerOf function, complete the calling-tree for powerOf $(2,6)$.

c) (5 points) Suggest a way to speedup the above powerOf function.

Spring 2019
Name: \qquad
Question 3. (16 points) Consider the following simple sorts discussed in class -- all of which sort in ascending order.

```
def bubbleSort(myList):
    for lastUnsortedIndex in range(len(myList)-1,0,-1):
        for testIndex in range(lastUnsortedIndex):
            if myList[testIndex] > myList[testIndex+1]:
                temp = myList[testIndex]
                myList[testIndex] = myList[testIndex+1]
                myList[testIndex+1] = temp
```

```
def insertionSort(myList):
    for firstUnsortedIndex in range(1,len(myList)):
        itemToInsert = myList[firstUnsortedIndex]
        testIndex = firstUnsortedIndex - 1
        while testIndex >= 0 and myList[testIndex] > itemToInsert:
            myList[testIndex+1] = myList[testIndex]
            testIndex = testIndex - 1
        myList[testIndex + 1] = itemToInsert
```

def selectionSort(aList):
for lastUnsortedIndex in range(len(aList)-1, 0, -1):
maxIndex $=0$
for testIndex in range(1, lastUnsortedIndex+1):
if aList[testIndex] > aList[maxIndex]:
maxIndex $=$ testIndex
\# exchange the items at maxIndex and lastUnsortedIndex
temp $=$ aList[lastUnsortedIndex]
aList[lastUnsortedIndex] = aList[maxIndex]
aList [maxIndex] = temp

Timings of Above Sorting Algorithms on 10,000 items (seconds)			
Type of sorting algorithm	Initial Ordering of Items		
	Descending	Ascending	Random order
bubbleSort.py	23.3	7.7	15.8
insertionSort.py	14.2	0.004	7.3
selectionSort.py	7.1	7.7	6.8

a) Explain why insertionSort on a descending list (14.2 s) takes about twice as long as insertionSort on a random list (7.3 s).
b) Explain why bubbleSort on a descending list (23.3 s) takes longer than insertionSort on a descending list (14.2 s).
c) Explain why selectionSort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ in the worst-case, where n is the size of the list being sorted.

Question 4. (20 points) In class we discussed the bubbleSort code shown in question 3 on page 2 which sorts in ascending order (smallest to largest) and builds the sorted part on the right-hand side of the list.
For this question write a variation of bubble sort that:

- sorts in ascending order still (smallest to largest), but
- adds a check to stop early if no swap occurs when scanning the unsorted part of the array, AND
- builds the sorted part on the left-hand side of the list, i.e.,

def bubbleSortVariation(myList):

Inner loop scans from right to left across the unsorted part swapping adjacent items that are "out of order"

Question 5. Recall the general idea of Quick sort:

- Partition by selecting a pivot item at "random" and then rearrange (partitioning) the unsorted items such that::
- Quick sort the unsorted part to the left of the pivot
Pivot Index

All items $<$ to Pivot	Pivot Item	All items $>=$ to Pivot

- Quick sort the unsorted part to the right of the pivot
(10 points) Explain why quick sort is $\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right.$) when sorting initially randomly ordered items. (n is the len(myList))
\qquad
Question 5. Two common rehashing strategies for open-address hashing are linear probing and quadratic probing:
quadratic \quad Check the square of the attempt-number away for an available slot, i.e.,
probing
$\left[\right.$ home address $+\left((\text { rehash attempt \# })^{2}+(\right.$ rehash attempt \#) $\left.) / / 2\right] \%$ (hash table size), where the hash table size is a power of 2. Integer division is used above
a) (8 points) Insert "Andrew Berns" and then "Sarah Diesburg" using Linear (on left) and Quadratic (on right) probing.

b) (8 points) Open-address hashing above, uses rehashing (e.g., linear or quadratic probing) when collisions occur. Initially, we used None to indicate that a hash table slot is "empty" and True to indicate that a slot had a "deleted" value. Explain why empty and deleted slots are treated differently.
c) (8 points) Briefly describe how closed-address hashing (e.g., ChainingDict) handles deletions.

