
Data Structures - Test 2

Question 1. (10 points) What is printed by the following program? Output:

def recFn(a, b):

 print(a, b)

 if a == b:

 return b

 elif a > b:

 return a

 else:

 return a + recFn(a + 2, b - 2) + b

 (**)

print("Result = ", recFn(-2, 8))
 (*)

Question 2. Write a recursive Python function to calculate (where n is an integer) based on the formulas:an

, for n = 0a0 = 1

, for n = 1a1 = a

, for even n > 1 (recall we can check for this in Python by n % 2 == 0)an = an/2an/2

, for odd n > 1an = a(n−1)/2a(n−1)/2a

a) (8 points) Complete the below powerOf recursive function

def powerOf(a, n):

b) (7 points) For the above recursive powerOf function, complete the calling-tree for powerOf (2, 6).

powerOf(2,6)

powerOf(2,3) powerOf(2,3)

c) (5 points) Suggest a way to speedup the above powerOf function.

Spring 2019 Name: ______________________

1

Run-time Stack

 a:
 b: 8

 -2

(*)
Initial
call-frame
of recFn

ret. addr:

Question 3. (16 points) Consider the following simple sorts discussed in class -- all of which sort in ascending order.

def bubbleSort(myList):

 for lastUnsortedIndex in range(len(myList)-1,0,-1):

 for testIndex in range(lastUnsortedIndex):

 if myList[testIndex] > myList[testIndex+1]:

 temp = myList[testIndex]

 myList[testIndex] = myList[testIndex+1]

 myList[testIndex+1] = temp

def insertionSort(myList):

 for firstUnsortedIndex in range(1,len(myList)):

 itemToInsert = myList[firstUnsortedIndex]

 testIndex = firstUnsortedIndex - 1

 while testIndex >= 0 and myList[testIndex] > itemToInsert:

 myList[testIndex+1] = myList[testIndex]

 testIndex = testIndex - 1

 myList[testIndex + 1] = itemToInsert

def selectionSort(aList):

 for lastUnsortedIndex in range(len(aList)-1, 0, -1):

 maxIndex = 0

 for testIndex in range(1, lastUnsortedIndex+1):

 if aList[testIndex] > aList[maxIndex]:

 maxIndex = testIndex

 # exchange the items at maxIndex and lastUnsortedIndex

 temp = aList[lastUnsortedIndex]

 aList[lastUnsortedIndex] = aList[maxIndex]

 aList[maxIndex] = temp

6.87.77.1selectionSort.py

7.30.00414.2insertionSort.py

15.87.723.3bubbleSort.py

Random orderAscendingDescending

Initial Ordering of Items
Type of sorting algorithm

Timings of Above Sorting Algorithms on 10,000 items (seconds)

a) Explain why insertionSort on a descending list (14.2 s) takes about twice as long as insertionSort on a random list

(7.3 s).

b) Explain why bubbleSort on a descending list (23.3 s) takes longer than insertionSort on a descending list (14.2 s).

c) Explain why selectionSort is O(n2) in the worst-case, where n is the size of the list being sorted.

Spring 2019 Name: ______________________

2

Question 4. (20 points) In class we discussed the bubbleSort code shown in question 3 on page 2 which sorts in

ascending order (smallest to largest) and builds the sorted part on the right-hand side of the list.

For this question write a variation of bubble sort that:

� sorts in ascending order still (smallest to largest), but

� adds a check to stop early if no swap occurs when scanning the unsorted part of the array, AND

� builds the sorted part on the left-hand side of the list, i.e.,

Sorted Part Unsorted Part

Inner loop scans from right to left
across the unsorted part swapping
adjacent items that are "out of order"

def bubbleSortVariation(myList):

Question 5. Recall the general idea of Quick sort:

� Partition by selecting a pivot item at “random” and then

rearrange (partitioning) the unsorted items such that::

� Quick sort the unsorted part to the left of the pivot

� Quick sort the unsorted part to the right of the pivot

(10 points) Explain why quick sort is O(n log2 n) when sorting initially randomly ordered items. (n is the len(myList))

Spring 2019 Name: ______________________

3

Pivot

Pivot Index

ItemAll items < to Pivot All items >= to Pivot

Question 5. Two common rehashing strategies for open-address hashing are linear probing and quadratic probing:

Check the square of the attempt-number away for an available slot, i.e.,

[home address + ((rehash attempt #)2 +(rehash attempt #))//2] % (hash table size), where the hash table size is

a power of 2. Integer division is used above

quadratic

probing

a) (8 points) Insert “Andrew Berns” and then “Sarah Diesburg” using Linear (on left) and Quadratic (on right) probing.

John DoeJohn Doe

hash(John Doe) = 6

Philip EastPhilip East

hash(Philip East) = 3

Mark FienupMark Fienup hash(Mark Fienup) = 4

Ben SchaferBen Schafer

hash(Ben Schafer) = 2

hash(Andrew Berns) = 3

hash(Sarah Diesburg) = 2

Hash functionHash Table with Linear Probing Hash Table with Quadratic Probing

00

11

22

33

44

55

66

77

b) (8 points) Open-address hashing above, uses rehashing (e.g., linear or quadratic probing) when collisions occur.

Initially, we used None to indicate that a hash table slot is "empty" and True to indicate that a slot had a "deleted"

value. Explain why empty and deleted slots are treated differently.

c) (8 points) Briefly describe how closed-address hashing (e.g., ChainingDict) handles deletions.

Spring 2019 Name: ______________________

4

ChainingDict Object

_capacity

0

1

2

3

4

5

6

7

_size

_index_table

Python list of UnorderedList objects

6 8

4

