1. An **AVL Tree** is a special type of Binary Search Tree (BST) that it is **height balanced**. By height balanced I mean that the height of every node's left and right subtrees differ by at most one. This is enough to guarantee that a AVL tree with \(n \) nodes has a height no worse than \(O(1.44 \log_2 n) \). Therefore, insertions, deletions, and search are worst case \(O(\log_2 n) \). An example of an AVL tree with integer keys is shown below. The height of each node is shown.

![AVL Tree Diagram]

Each AVL-tree node usually stores a **balance factor** in addition to its key and payload. The balance factor keeps track of the relative height difference between its left and right subtrees, i.e., \(\text{height(left subtree)} - \text{height(right subtree)} \).

a) Label each node in the above AVL tree with one of the following balance factors:
 - 0 if its left and right subtrees are the same height
 - 1 if its left subtree is one taller than its right subtree
 - -1 if its right subtree is one taller than its left subtree

b) We start a \texttt{put} operation by adding the new item into the AVL as a leaf just like we did for Binary Search Trees (BSTs). Add the key 90 to the above tree.

c) Identify the node “closest up the tree” from the inserted node (90) that no longer satisfies the height-balanced property of an AVL tree. This node is called the **pivot node**. Label the pivot node above.

d) Consider the subtree whose root is the pivot node. How could we rearrange this subtree to restore the AVL height balanced property? (Draw the rearranged tree below)
2. Typically, the addition of a new key into an AVL requires the following steps:
 • compare the new key with the current tree node’s key (as we did in the _put function called by the put method in the BST) to determine whether to recursively add the new key into the left or right subtree
 • add the new key as a leaf as the base case(s) to the recursion
 • recursively (updateBalance method) adjust the balance factors of the nodes on the search path from the new node back up toward the root of the tree. If we encounter a pivot node (as in question (c) above) we perform one or two “rotations” to restore the AVL tree’s height-balanced property.

For example, consider the previous example of adding 90 to the AVL tree. Before the addition, the pivot node (60) was already -1 ("tall right" - right subtree had a height one greater than its left subtree). After inserting 90, the pivot’s right subtree had a height 2 more than its left subtree (balance factor -2) which violates the AVL tree’s height-balance property. This problem is handled with a left rotation about the pivot as shown in the following generalized diagram:

Before the addition:
from parent

After the addition, but before rotation:

After left rotation at pivot:
from parent

a) Assuming the same initial AVL tree (upper, left-hand of above diagram) if the new node would have increased the height of TC (instead of TE), would a left rotation about the node B have rebalanced the AVL tree?
b) Before the addition, if the pivot node was already -1 (tall right) and if the new node is inserted into the left subtree of the pivot node’s right child, then we must do two rotations to restore the AVL-tree’s height-balance property.

Before the addition:

After the addition, but before first rotation:

Recursive updateBalance finds the pivot and calls rebalance method to perform rotation(s)

D's & F's balance factors have already been adjusted before the pivot was found

After the left rotation at pivot and balance factors adjusted correctly:

After right rotation at F, but before left rotation at pivot:

b) Suppose that the new node was added in T_C instead of T_B, then the same two rotations would restore the AVL-tree’s height-balance property. However, what should the balance factors of nodes B, D, and F be after the rotations?
Consider the AVLTreeNode class that inherits and extends the TreeNode class to include balance factors.

```python
from tree_node import TreeNode

class AVLTreeNode(TreeNode):
    def __init__(self, key, val, left=None, right=None, parent=None, balanceFactor=0):
        TreeNode.__init__(self, key, val, left, right, parent)
        self.balanceFactor = balanceFactor
```

Now let's consider the partial AVLTree class code that inherits from the BinarySearchTree class:

```python
from avl_tree_node import AVLTreeNode
from binary_search_tree import BinarySearchTree

class AVLTree(BinarySearchTree):
    def put(self, key, val):
        if self.root:
            self._put(key, val, self.root)
        else:
            self.root = AVLTreeNode(key, val)
            self.size = self.size + 1

    def _put(self, key, val, currentNode):
        if key < currentNode.key:
            if currentNode.hasLeftChild():
                self._put(key, val, currentNode.leftChild)
            else:
                currentNode.leftChild = AVLTreeNode(key, val, parent=currentNode)
                currentNode.updateBalance()
                newRoot = currentNode
        elif key > currentNode.key:
            if currentNode.hasRightChild():
                self._put(key, val, currentNode.rightChild)
            else:
                currentNode.rightChild = AVLTreeNode(key, val, parent=currentNode)
                currentNode.updateBalance()
                newRoot = currentNode
        else:
            currentNode.payload = val
            self.size += 1

    def updateBalance(self, node):
        if node.balanceFactor > 1 or node.balanceFactor < -1:
            self.rebalance(node)
            return

        if node.parent != None:
            if node.isLeftChild():
                node.parent.balanceFactor += 1
            elif node.isRightChild():
                node.parent.balanceFactor -= 1
            if node.parent.balanceFactor != 0:
                self.updateBalance(node.parent)

    def rotateLeft(self, self, rotRoot):
        # NOTE: You will complete rotateRight in Lab
        newRoot = rotRoot.rightChild
        rotRoot.rightChild = newRoot.leftChild
        if newRoot.leftChild != None:
            newRoot.leftChild.parent = rotRoot
            newRoot.parent = rotRoot.parent
            if rotRoot.isRoot():
                self.root = newRoot
        else:
            if rotRoot.isLeftChild():
                rotRoot.parent.leftChild = newRoot
            else:
                rotRoot.parent.rightChild = newRoot
        newRoot.leftChild = rotRoot
        rotRoot.parent = newRoot
        rotRoot.balanceFactor = rotRoot.balanceFactor + 1 - min(newRoot.balanceFactor, 0)
        newRoot.balanceFactor = newRoot.balanceFactor + 1 + max(rotRoot.balanceFactor, 0)

    def rebalance(self, self, node):
        if node.balanceFactor < 0:
            if node.rightChild.balanceFactor > 0:
                self.rotateRight(node.rightChild)
                self.rotateLeft(node)
            else:
                self.rotateLeft(node)
        elif node.balanceFactor > 0:
            if node.leftChild.balanceFactor < 0:
                self.rotateLeft(node.leftChild)
                self.rotateRight(node)
            else:
                self.rotateRight(node)
```

c) Trace the code for `myAVL.put(90, None)` by updating the below diagram:

```
myAVL AVLTree object
    size
    root
```

```
30
  9
  34
  32
  47
```

Consider balance factor formulas for `rotateLeft`. We know:

\[newBal(B) = h_A - h_C \text{ and } oldBal(B) = h_A - (1 + \max(h_C, h_E)) \]
\[newBal(D) = 1 + \max(h_D, h_C) - h_E \text{ and } oldBal(D) = h_C - h_E \]

```
Before left rotation:
  root

  B
  height h_A
  Rotate
  Left at Pivot

  D
  height h_C

After left rotation at pivot:
  newRoot

  D
  height h_C

  B
  height h_A
```

Consider: `newBal(B) - oldBal(B)`

\[
\begin{align*}
\text{newBal}(B) - \text{oldBal}(B) &= (h_A - h_C) - (h_A - (1 + \max(h_C, h_E))) \\
&= h_A - (1 + \max(h_C, h_E)) \\
\text{newBal}(B) - \text{oldBal}(B) &= h_A - h_C + (1 + \max(h_C, h_E)) \\
\text{newBal}(B) - \text{oldBal}(B) &= h_A - h_C + 1 + \max(h_C, h_E) - h_E \\
\text{newBal}(B) - \text{oldBal}(B) &= 1 + \max(h_C, h_E) - h_C \\
\text{newBal}(B) - \text{oldBal}(B) &= 1 + \max(h_C, h_E) - h_C \\
\text{newBal}(B) - \text{oldBal}(B) &= \text{oldBal}(B) + 1 + \max(0, -\text{oldBal}(D)) \\
\text{newBal}(B) - \text{oldBal}(B) &= \text{oldBal}(B) + 1 - \min(0, \text{oldBal}(D)) \\
\text{rotRoot.balanceFactor} &= \text{rotRoot.balanceFactor} + 1 - \min(\text{newRoot.balanceFactor}, 0)
\end{align*}
\]
3. Complete the below figure which is a “mirror image” to the figure on page 2, i.e., inserting into the pivot’s left child’s left subtree. Include correct balance factors after the rotation.

b) Complete the below figure which is a “mirror image” to the figure on page 3, i.e., inserting into the pivot’s left child’s right subtree. Include correct balance factors after the rotation.
Objectives: You will gain experience with AVL put implementation

To start the lab: Download and unzip the file: http://www.cs.uni.edu/~fienup/cs1520s19/labs/lab10.zip

Part A: In lecture 23 we discussed the AVL tree `rotateLeft` method. For this lab you need to implement the `rotateRight` method. The `rotateRight` method has two parts:

- updating the "pointers" to the nodes to do the rotation (look at the `rotateLeft` method code)
- updating the balanceFactors for the `rotRoot` and `newRoot` nodes (you need to use math similar to lecture 23)

(See below too)

Before right rotation:

```
rotRoot
```

```
    newRoot

    D

    B

    Rotate Right at Pivot

    T_E
    height
    h_E

    T_A
    height
    h_A

    T_C
    height
    h_C
```

After right rotation at pivot:

```
newRoot
```

```
    B

    D

    T_A
    height
    h_A

    T_C
    height
    h_C

    T_E
    height
    h_E
```

Consider the balance factor formulas for `rotateRight`. We know from the above diagram:

- `oldBal(B) = h_A - h_C` and `newBal(B) = h_A - (1 + max(h_C, h_E))`
- `oldBal(D) = (1+max(h_A, h_C)) - h_E` and `newBal(D) = h_C - h_E`

To determine `newBal(D)`, consider:

```
newBal(D) - oldBal(D) =
```

(See back for `newBal(B)` calculation)
Consider the balance factor formulas for rotateRight. We know from the above diagram:

\[
\begin{align*}
oldBal(B) &= h_A - h_C \\
oldBal(D) &= (1+\max(h_A, h_C)) - h_E \\
newBal(B) &= h_A - (1 + \max(h_C, h_E)) \\
newBal(D) &= h_C - h_E
\end{align*}
\]

To determine newBal(B), consider:

\[
newBal(B) - oldBal(B) =
\]

After completing your implementation of rotateRight, test your code by running the avl_tree.py program. Once you think it is working, run the timeAVLTree.py program. The height of AVL tree after adding in sorted order should be 13, and the height of AVL tree after adding in shuffled order should be about 15.

When it is working, raise your hand and we will check you off.

(If you have extra time, consider working on previous labs or homeworks.)
1. BST, AVL trees, and hash tables can all be used to implement a dictionary ADT.

<table>
<thead>
<tr>
<th>Dictionary Successful Search Comparisons with 10,000 integer items (Time in seconds)</th>
<th>Items added in sorted order</th>
<th>Items added in random order</th>
<th>Order did not matter (Hash table sizes $2^{15} = 32K$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BST</td>
<td>AVL Tree</td>
<td>BST</td>
</tr>
<tr>
<td>Total add/put time</td>
<td>47.785</td>
<td>0.205</td>
<td>0.119</td>
</tr>
<tr>
<td>Total search time</td>
<td>38.100</td>
<td>0.060</td>
<td>0.079</td>
</tr>
<tr>
<td>Height of resulting tree</td>
<td>9,999</td>
<td>13</td>
<td>30</td>
</tr>
</tbody>
</table>

a) The puts of these 10,000 randomly ordered items into the BST took 0.119 seconds and 0.195 seconds into the AVL tree. Why did the BST puts take less time even though the final height was 30 vs. a final AVL tree height of 15?

b) With a very, very poor hash function or very, very bad choice of keys, then all keys could hash to the same home address.
 - What would be the worst-case big-oh of open-address hashing with quadratic probing?
 - What would be the worst-case big-oh of chaining using a linked list at each home address (i.e., ChainingDict)?
 - What would be the worst-case big-oh of chaining using an AVL tree at each home address?

![Hash Table Diagram]

2. The data structures we have discussed so far are all in-memory, i.e., data is stored in main/RAM memory. Data can also be stored on secondary storage in a file (e.g., movieData.txt file). Currently, most secondary storage consists of hard-disks.

a) Complete the following table comparing main/RAM memory vs. hard-disk:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Main/RAM memory</th>
<th>Hard-disk Drive</th>
<th>Solid-State Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size on a typical desktop computer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average access time</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Which criterion seems to be the most important difference between the main and secondary memories?
3. Disk-access time = (seek time) + (rotational delay) + (date transfer time). How is each component of the disk-access time effected by increasing the disk's RPMs (revolutions per minute)?

b) If we want fast access to a collection of sectors, where can we place them to minimize seek time and rotational delay?
User Program - HLL programming language makes system calls to OS to:
1. open file - establish a link between file variable and file for either reading, writing, or both
2. access file - read or write one piece of data at a time (e.g., char., record, etc.)
3. close file - flush changes to disk

Operating System - manages and controls access to secondary storage through its file system which contains:
 - information about every file: location on disk, ownership and security/protection
 - OS views disk as a linear sequence of blocks (block 0, block 1, etc.), but assumes closeness
 in block # means close with respect to access time.
 - OS buffers some blocks in memory to improve efficiency
 - OS maintains free disk space "list"

Secondary Storage - accepts R/W requests from OS for block# and maps block# to internals physical address
Device (e.g., (track #, surface #, sector #)) - more complex than above picture!

Kinds of File Access:
- serial/sequential files - open at the beginning and read sequentially from beginning to end linearly
- random-access files - "seek" to any position by specifying a byte-offset from the beginning of the file, record #,
 etc.
- random-access of a record by key

Implementation of Files on Disk - how are blocks allocated?
4. non-contiguous - scattered across linear address space of OS and disk

File system meta-data
for file

linked-list of blocks on disk

a) What types of file access are supported efficiently?

b) How easy is it for the file to grow in size?

5. contiguous - sequential collection of blocks from OS linear view of disk

File system meta-data
for file

| 10 |

| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |

a) What types of file access are supported efficiently?

b) How easy is it for the file to grow in size?
6. File descriptor blocks - list of blocks hold the address of the physical location of data blocks

a) What types of file access are supported efficiently?

b) How easy is it for the file to grow in size?

7. To implement "random-access of a record by key" in a file how might we use hashing?

8. To implement "random-access of a record by key" in a file why would an AVL tree not work well?
9. A B+ Tree is a multi-way tree (typically in the order of 100s children per node) used primarily as a file-index structure to allow fast search (as well as insertions and deletions) for a target key on disk. Two types of pages (B+ tree "nodes") exist:
- Data pages - which always appear as leaves on the same level of a B+ tree (usually a doubly-linked list too)
- Index pages - the root and other interior nodes above the data page leaves. Index nodes contain some minimum and maximum number of keys and pointers bases on the B+ tree's branching factor \((b)\) and fill factor. A 50% fill factor would be the minimum for any B+ tree. All index pages must have \(\lfloor b/2 \rfloor \leq \# \text{ child} \leq b\), except the root which must have at least two children.

Consider an B+ tree example with \(b = 5\).

![B+ Tree Example]

a) How would you find 88?

b) The insert algorithm for a B+ tree is summarized by the below table. Where would you insert 50, 100, 105, 110, 180, 200, 210?

<table>
<thead>
<tr>
<th>Situation</th>
<th>insertion Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Page Full?</td>
<td>Parent Index Page Full?</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
| Yes | No | 1. Split data page with records < middle key going in left data page and records ≥ middle key going in right data page.
2. Place middle key in index page in sorted order with the pointer immediately to its left pointing to the left data page and the pointer immediately to its right pointing to the right data page. |
| Yes | Yes | 1. Split data page with records < middle key going in left data page and records ≥ middle key going in right data page.
2. Adding middle key to parent index page causes it to split with keys < middle key going into the left index page, keys > middle key going in right index page, and the middle key inserted into the next higher level index page. If the next higher index page is full continue to splitting index pages up the B+ tree as necessary. |
c) For a B+ tree with a branch factor 201, what would be the worst case height of the tree if the number of keys was 1,000,000,000,000?

10. The deletion algorithm for a B+ tree is summarized by the below table.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Delete record from the data page. Shifting records with larger keys to left to fill in the hole. If the deleted key appears in the index page, use the next key to replace it.</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>1. Combine data page and its sibling. Change the index page to reflect the change.</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>1. Combine data page and its sibling. 2. Adjusting the index page to reflect the change causes it to drop below the fill factor, so combine the index page with its sibling. 3. Continue combining the next higher level index pages until you reach an index page with the correct fill factor or you reach the root index page.</td>
</tr>
</tbody>
</table>

Consider an B+ tree example with \(b = 5 \) and 50% fill factor. Delete 89, 65, and 88. What is the resulting B+ tree?
1. Consider the following directed graph (diagraph) \(G = (V, E) \):

![Graph Diagram]

a) What is the set of vertices? \(V = \)

b) An edge can be represented by a tuple (from vertex, to vertex [, weight]). What is the set of edges? \(E = \)

c) A path is a sequence of vertices that are connected by edges. In the graph \(G \) above, list two different paths from \(v_0 \) to \(v_3 \).

d) A cycle in a directed graph is a path that starts and ends at the same vertex. Find a cycle in the above graph.

2. Like most data structures, a graph can be represented using an array, or as a linked list of nodes. The array representation is a two-dimensional array (called an adjacency matrix) whose elements contain information about the edges and the vertices corresponding to the indices. (Python could use a list-of-lists)

a) Complete the following adjacency matrix for the above graph. (Here a missing edge is represented by \(\infty \)).

<table>
<thead>
<tr>
<th></th>
<th>(v_0)</th>
<th>(v_1)</th>
<th>(v_2)</th>
<th>(v_3)</th>
<th>(v_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_0)</td>
<td>0</td>
<td>1</td>
<td>(\infty)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>(v_1)</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(v_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) The linked representation maintains a linked-list (or Python dictionary) of vertices with each vertex maintaining a linked list of other vertices that it connects to. Complete the adjacency list representation below:

[Diagram of Vertex List and Edge Lists]

G

Vertex List

Edge Lists for each vertex containing connected-to and edge-weight information

123
3. Graphs can be used to solve many problems by modeling the problem as a graph and using "known" graph algorithm(s). For example, consider the word-ladder puzzle where you transform one word into another by changing one letter at a time, e.g., transform FOOL into SAGE by FOOL → FOIL → FAIL → FALL → PALL → PALE → SALE → SAGE.

We can use a graph algorithm to solve this problem by constructing a graph such that
- a word represents a vertex
- an edge represents?

- a word ladder transformation from one word to another represents?

4. For the words listed below, draw the graph of question 3

![Graph diagram]

(a) List a different transformation from FOOL to SAGE

(b) If we wanted to find the shortest transformation from FOOL to SAGE, what does that represent in the graph?

c) There are two general approaches for traversing a graph from some starting vertex s:

- Breadth First Search (BFS) where you find all vertices a distance 1 (directly connected) from s, before finding all vertices a distance 2 from s, etc.
- Depth First Search (DFS) where you explore as deeply into the graph as possible. If you reach a "dead end," we backtrack to the deepest vertex that allows us to try a different path.

Which of these traversals would be helpful for finding the shortest solution to the word-ladder puzzle?
Objectives: To understand how a graph can be represented and traversed.

To start the lab: Download and unzip the file http://www.cs.uni.edu/~fienup/cs1520s19/labs/lab11.zip

Part A: In a word-ladder puzzle (discussed in class) transforms one word into another by changing one letter at a time, e.g., transform FOOL into SAGE by FOOL → FOIL → FAIL → FALL → PALL → PALE → SALE → SAGE.

We used a graph algorithm to solve this problem by constructing a graph such that
- words are represented by the vertices, and
- edges connect vertices containing words that differ by only one letter.

a) For the words listed below, complete the graph by adding edges as defined above.

![Graph Diagram]

b) To find the shortest transformation from FOOL to SAGE, why did we decide on using a Breadth First Search (BFS) traversal (i.e., where you find all vertices a distance 1 (directly connected) from FOOL, before finding all vertices a distance 2 from FOOL, etc) instead of a Depth-First Search (DFS) traversal?

c) Run the lab11/word_ladder_BFS.py program. Examine the "enqueue" and "dequeue" lines of output produced by the bfs(g, g.getVertex("fool")) call. Does this output match the expected "enqueues" and "dequeues" performed during a bfs of the above graph starting at "fool"?

d) The bfs algorithm sets the value of each vertex's predecessor to point to the vertex object that enqueued it. **Add code to the end of the word_ladder_BFS.py program** that traverses the "linked list" of predecessor references from "sage" to "fool" and prints the corresponding word ladder from "fool" to "sage."

Hint: The code you need to write is similar to the __str__ code for traversing a singly-linked list:
def __str__(self):
 resultStr = ""
 current = self._head
 while current != None:
 resultStr += " " + str(current.getData())
 current = current.getNext()
 return resultStr

Your code (see partial code at the end of the word_ladder_BFS.py program) can:
• walk currentVert down the linked list of Vertex objects using getPred instead of getNext
• append to wordLadderList the currentVert's word gotten using getId instead of string
 concatenating using getData

After your while-loop executes, you can reverse the wordLadderList and print the transformation from "fool" to "sage."

After you have answered the above questions and completed the code, raise your hand and explain your answers.

Part B: Section 7.5 uses recursion and the run-time stack to implement a DFS traversal. The DFSGraph uses a time
attribute to note when a vertex if first encountered (discovery attribute) in the depth-first search and when a vertex in
backtracked through (finish attribute). Consider the graph for making pancakes where vertices are steps and edges represents
the partial order among the steps.

from graph import Graph
class DFSGraph(Graph):
 def __init__(self):
 super().__init__()
 self.time = 0

 def dfs(self):
 for aVertex in self:
 aVertex.setColor('white')
 aVertex.setPred(-1)
 for aVertex in self:
 if aVertex.getColor() == 'white':
 self.dfsvisit(aVertex)

 def dfsvisit(self,startVertex):
 startVertex.setColor('gray')
 self.time += 1
 startVertex.setDiscovery(self.time)
 for nextVertex in startVertex.getConnections():
 if nextVertex.getColor() == 'white':
 nextVertex.setPred(startVertex)
 self.dfsvisit(nextVertex)
 startVertex.setColor('black')
 self.time += 1
 startVertex.setFinish(self.time)

3/4 cup "milk"

1 "egg"
1 Tbl "oil"
1/2 cup "flour"

"mix" the batter

"heat" griddle

"pour" 1/2 cup of batter

"turn" when bubbly

"heat" syrup

"eat"

a) Run the lab11/make_pancake_DFS.py program. Write on the above graph the discovery and finish
attributes (e.g., 1/12 of "oil") assigned to each vertex by executing the dfs method.

b) A topological sort algorithm can use the dfs finish attributes to determine a proper order to avoid putting the
"cart before the horse." For example, we don't want to "pour 1/2 cup of batter" before we "mix the batter", and we
don't want to "mix the batter" until all the ingredients have been added. Outline the steps to perform a topological
sort from the finish attributes.

After you have answered the above questions, raise your hand and explain your answers.

EXTRA CREDIT:
Add code to the end of the make_pancake_DFS.py program to print the topological sort for making pancakes.
1. There are two general approaches for traversing a graph from some starting vertex s:

- **Depth First Search (DFS)** where you explore as deeply into the graph as possible. If you reach a "dead end," we backtrack to the deepest vertex that allows us to try a different path.

- **Breadth First Search (BFS)** where you find all vertices a distance 1 (directly connected) from s, before finding all vertices a distance 2 from s, etc.

What data structure would be helpful in each type of search? Why?

a) Breadth First Search (BFS):

b) Depth First Search (DFS):

2. On the next page is the textbook’s edge, vertex, and graph implementations.

a) How does this graph implementation maintain its set of vertices?

b) How does this graph implementation maintain its set of edges?

3. Assuming a graph G containing the word-ladder graph from lecture 25, on the diagram trace the **BFS** algorithm by showing the value of each vertex’s color, predecessor, and distance attributes?
```python
class Vertex:
    def __init__(self, key, color = 'white',
                 dist = 0, pred = None):
        self.id = key
        self.connectedTo = {}
        self.color = color
        self.predecessor = pred
        self.distance = dist
        self.discovery = 0
        self.finish = 0
    def addNeighbor(self,nbr,weight=0):
        self.connectedTo[nbr] = weight
    def __str__(self):
        return str(self.id) + ' connectedTo: ' + str([x.id for x in self.connectedTo])
    def getConnections(self):
        return self.connectedTo.keys()
    def getId(self):
        return self.id
    def getWeight(self,nbr):
        return self.connectedTo[nbr]
    def getColor(self):
        return self.color
    def setColor(self, newColor):
        self.color = newColor
    def getPred(self):
        return self.predecessor
    def setPred(self, newPred):
        self.predecessor = newPred
    def getDiscovery(self):
        return self.discovery
    def setDiscovery(self, newDiscovery):
        self.discovery = newDiscovery
    def getFinish(self):
        return self.finish
    def setFinish(self, newFinish):
        self.finish = newFinish
    def getDistance(self):
        return self.distance
    def setDistance(self, newDistance):
        self.distance = newDistance

class Graph:
    def __init__(self):
        self.vertList = {}
        self.numVertices = 0
    def addVertex(self, key):
        self.numVertices = self.numVertices + 1
        newVertex = Vertex(key)
        self.vertList[key] = newVertex
        return newVertex
    def getVertex(self, n):
        if n in self.vertList:
            return self.vertList[n]
        else:
            return None
    def __contains__(self,n):
        return n in self.vertList
    def addEdge(self,f,t,cost=0):
        if f not in self.vertList:
            nv = self.addVertex(f)
        if t not in self.vertList:
            nv = self.addVertex(t)
        self.vertList[f].addNeighbor(t,
                                  cost)
    def getVertices(self):
        return self.vertList.keys()
    def __iter__(self):
        return iter(self.vertList.values())

from graph import Graph
from vertex import Vertex
from linked_queue import LinkedQueue

def bfs(g, start):
    start.setDistance(0)
    start.setPred(None)
    vertQueue = LinkedQueue()
    vertQueue.enqueue(start)
    while (vertQueue.size() > 0):
        currentVert = vertQueue.dequeue()
        for nbr in currentVert.getConnections():
            if (nbr.getColor() == 'white'):
                nbr.setColor('gray')
                nbr.setDistance(currentVert.getDistance()+1)
                nbr.setPred(currentVert)
                vertQueue.enqueue(nbr)
        currentVert.setColor('black')
```

4. Section 7.5 uses recursion and the run-time stack to implement a DFS traversal. The `DFSGraph` uses a `time` attribute to note when a vertex if first encountered (discovery attribute) in the depth-first search and when a vertex in backtracked through (finish attribute). Consider the graph for making pancakes where vertices are steps and edges represents the partial order among the steps.

```python
from graph import Graph
class DFSGraph(Graph):
    def __init__(self):
        super().__init__()
        self.time = 0

    def dfs(self):
        for aVertex in self:
            aVertex.setColor('white')
            aVertex.setPred(-1)
        for aVertex in self:
            if aVertex.getColor() == 'white':
                self.dfsVisit(aVertex)

    def dfsVisit(self, startVertex):
        startVertex.setColor('gray')
        self.time += 1
        startVertex.setDiscovery(self.time)
        for nextVertex in startVertex.getConnections():
            if nextVertex.getColor() == 'white':
                nextVertex.setPred(startVertex)
                self.dfsVisit(nextVertex)
        startVertex.setColor('black')
        self.time += 1
        startVertex.setFinish(self.time)
```

a) Assume (why is this a bad assumption?) that the for-loops alway iterate through the vertexes alphabetically (e.g., "cat", "egg", "flour", ...) by their id. Write on the above graph the discovery and finish attributes assigned to each vertex by executing the `dfs` method.

b) A topological sort algorithm can use the `dfs` discovery and `finish` attributes to determine a proper order to avoid putting the "cart before the horse." For example, we don't want to "pour 1/2 cup of batter" before we "mix the batter", and we don't want to "mix the batter" until all the ingredients have been added. Outline the steps to perform a topological sort.
Dijkstra's Algorithm is a greedy algorithm that finds the shortest path from some vertex, say \(v_0 \), to all other vertices. A greedy algorithm, unlike divide-and-conquer and dynamic programming algorithms, DOES NOT divide a problem into smaller subproblems. Instead a greedy algorithm builds a solution by making a sequence of choices that look best ("locally" optimal) at the moment without regard for past or future choices (no backtracking to fix bad choices). Dijkstra's algorithm builds a subgraph by repeatedly selecting the next closest vertex to \(v_0 \) that is not already in the subgraph. Initially, only vertex \(v_0 \) is in the subgraph with a distance of 0 from itself.

a) What would be the order of vertices added to the subgraph during Dijkstra's algorithm?

b) What greedy criteria did you use to select the next vertex to add to the subgraph?

c) What data structure could be used to efficiently determine that selection?

d) How might this data structure need to be modified?
1. Suppose you had a map of settlements on the planet X
 (Assume edges could connecting all vertices with their Euclidean distances as their costs)

 We want to build roads that allow us to travel between any pair of cities. Because resources are scarce, we want the total length of all roads build to be minimal. Since all cities will be connected anyway, it does not matter where we start, but assume we start at "a".

 a) Assuming we start at city "a" which city would you connect first? Why this city?

 b) What city would you connect next to expand your partial road network?

 c) What would be some characteristics of the resulting "graph" after all the cities are connected?

 d) Does your algorithm come up with the overall best (globally optimal) result?
2. Prim’s algorithm for determining the minimum-spanning tree (MST) of a graph is another example of a greedy algorithm. Unlike divide-and-conquer and dynamic programming algorithms, greedy algorithms DO NOT divide a problem into smaller subproblems. Instead a greedy algorithm builds a solution by making a sequence of choices that look best ("locally" optimal) at the moment without regard for past or future choices (no backtracking to fix bad choices).

a) What greedy criteria does Prim’s algorithm use to select the next vertex and edge to the partial minimum spanning tree?

b) What data structure would be useful it finding the next vertex to add to the partial MST?

The textbook’s Prim’s Algorithm code (Listing 7.12 p. 346) was incorrect, but fixed on-line to:

```python
def prim(G, start):
    pq = PriorityQueue()
    for v in G:
        v.setDistance(sys.maxsize)
        v.setPred(None)
    start.setDistance(0)
    pq.buildHeap([(v.getDistance(), v) for v in G])
    while not pq.is_empty():
        currentVert = pq.delMin()
        for nextVert in currentVert.getConnections():
            newCost = currentVert.getWeight(nextVert) + currentVert.getDistance()
            if nextVert in pq and newCost < nextVert.getDistance():
                nextVert.setPred(currentVert)
                nextVert.setDistance(newCost)
                pq.decreaseKey(nextVert, newCost)
```

c) The `PriorityQueue` class used is shown on the next page and is similar to the `BinHeap` class we have been using, except:

- `self.heapArray` is a list of tuples with the first tuple value (tuple index 0) being the “priority” and second tuple value (tuple index 1) being its associated value.

In Prim’s algorithm what is the priority value?

In Prim’s algorithm what is the associated value?

- a `__contains__` method is added to check if a value is in the priority queue.
In Prim’s algorithm where is the `__contains__` method invoked?

- a `decreaseKey` method is added to allow a priority value to be reduced (i.e., increasing its priority).
In Prim’s algorithm when is the `decreaseKey` method used?

d) As written what is the big-oh of each of the methods?

- `__contains__` method?
- `decreaseKey` method?
The PriorityQueue class including the __contains__ and decreaseKey methods:

class PriorityQueue:
 def __init__(self):
 self.heapArray = [(0, 0)]
 self.currentSize = 0

 def buildHeap(self, alist):
 self.currentSize = len(alist)
 self.heapArray = [(0, 0)]
 for i in range(len(alist) // 2, -1, -1):
 self.percDown(i)

 def percDown(self, i):
 while (i * 2) <= self.currentSize:
 mc = self.minChild(i)
 if self.heapArray[i][0] > self.heapArray[mc][0]:
 tmp = self.heapArray[i]
 self.heapArray[i] = self.heapArray[mc]
 self.heapArray[mc] = tmp
 i = mc
 return i

 def minChild(self, i):
 if i * 2 > self.currentSize:
 return -1
 else:
 if i * 2 + 1 > self.currentSize:
 return i * 2
 else:
 if self.heapArray[i * 2][0] < self.heapArray[i * 2 + 1][0]:
 return i * 2
 else:
 return i * 2 + 1

 def percUp(self, i):
 while i // 2 > 0:
 if self.heapArray[i][0] < self.heapArray[i // 2][0]:
 tmp = self.heapArray[i // 2]
 self.heapArray[i // 2] = self.heapArray[i]
 self.heapArray[i] = tmp
 i = i // 2

 def add(self, k):
 self.heapArray.append(k)
 self.currentSize = self.currentSize + 1
 self.percUp(self.currentSize)

 def delMin(self):
 retVal = self.heapArray[1][1]
 self.currentSize = self.currentSize - 1
 self.heapArray.pop()
 self.percDown(1)
 return retVal

 def isEmpty(self):
 if self.currentSize == 0:
 return True
 else:
 return False

 def decreaseKey(self, val, ant):
 # this is a little weird, but we need to find the
 # heap thing to decrease by looking at its value
 done = False
 i = 1
 myKey = 0
 while not done and i <= self.currentSize:
 if self.heapArray[i][1] == val:
 done = True
 myKey = i
 else:
 i += 1
 if myKey > 0:
 self.heapArray[myKey] = (ant, self.heapArray[myKey][1])
 self.percUp(myKey)

 def __contains__(self, v):
 for pair in self.heapArray:
 if pair[1] == v:
 return True
 return False

3. If we want to speed-up the __contains__ and decreaseKey methods, then what type of data structure could we add to aid in:
 • checking for the existence of a key value, and
 • if a key value exists in the heap, then at what index does it reside?

4. What modifications would need be needed to other methods to keep the data structure in question 3 up-to-date?
Data Structures

Lab 12 Graphs 2

Objectives: To understand how a graph can be used to solve graph algorithms.

To start the lab: Download and unzip the file lab12.zip

Part A: In IDLE open the PriorityQueue class file: lab12/priorityQueue.py. The changes to our familiar BinHeap class that we discussed in lecture are included:
- self.heapArray is a list of tuples with the first tuple value (tuple index 0) being the “priority” and second tuple value (tuple index 1) being its associated “key” value.
- A __contains__ method is added to check if a value is in the priority queue.
- A decreaseKey method is added to allow a priority value to be reduced (i.e., increasing its priority).

a) Why do the methods percDown, minChild, and percUp used the tuple index 0 when comparing tuples in the self.heapArray?

b) Why do the methods decreaseKey and __contains__ used the tuple index 1 when comparing tuples in the self.heapArray?

c) Run the lab12/make_min_spanning_tree.py program which uses Prim’s algorithm on the graph from lecture. Does it give the expected output?

d) Predict the order of edges added by Prim’s algorithm if we start at vertex “e”:

![Graph Diagram]

d) Modify the lab12/make_min_spanning_tree.py program to verify your prediction. NOTE: This is a very easy modification. You just need to start Prim’s algorithm starting at the vertex labeled “e”.

After you have answered the above questions and completed the code, raise your hand and explain your answers.
Data Structures Lab 12 Graphs 2 Name:

Part B: The textbook’s Dijkstra’s Algorithm code (Listing 7.11 p. 341 and same on-line) is in the lab12/graph_algorithms.py file.

a) Run the lab12/test_dijkstra.py program which uses Dijkstra’s algorithm on the graph from lecture. Does it give the expected output?

![Graph Diagram]

b) Modify the dijkstra function in the lab12/graph_algorithms.py file by comparing it to the similar prim function.

After you have fixed the dijkstra function in lab12/graph_algorithms.py, raise your hand and demonstrate your code by running the lab12/test_dijkstra.py program.

Part C: In IDLE open the PriorityQueue class file: lab12/Part_C/priorityQueue.py. This version adds a data attribute self.keyToIndexDict dictionary where the keys are all the second tuple values in the self.heapArray and their values are their corresponding index locations in is the self.heapArray.

The methods buildHeap, percDown, minChild, and percUp have all been modified to correctly update the self.keyToIndexDict dictionary.

Your task for Part C is to complete the methods decreaseKey and __contains__ so that they use the self.keyToIndexDict dictionary. Thus, greatly improving the efficiency of decreaseKey and __contains__ methods.

After you have completed the decreaseKey and __contains__ methods in lab12/Part_C/priorityQueue.py, raise your hand and demonstrate your code by running the lab12/Part_C/make_min_spanning_tree.py program.

The EXTRA CREDIT Opportunities related to Part B:
1. Add code to the end of the test_dijkstra.py program to print the shortest paths from v0 to each of the other vertices. One line of output might look something like:
 “Shortest path from v0 to v4 is v0 > v3 > v4 with a total distance of 4”
1. **Traveling Salesperson Problem (TSP)** -- Find an optimal (i.e., minimum length) tour when at least one tour exists. A tour (or Hamiltonian circuit) is a path from a vertex back to itself that passes through each of the other vertices exactly once. (Since a tour visits every vertex, it does not matter where you start, so we will generally start at \(v_0 \).)

What are the length of the following tour?

a) \([v_0, v_3, v_4, v_2, v_0]\)

b) List another tour starting at \(v_0 \) and its length.

c) For a graph with \(n \) vertices \((v_0, v_1, v_2, \ldots, v_n) \), one possible approach to solving TSP would be to brute-force generate all possible tours to find the minimum length tour. "Complete" the following decision tree to determine the number of possible tours.

Unfortunately, TSP is an "\(NP \)-hard" problem, i.e., no known polynomial-time algorithm.
2. Handling "Hard" Problems: For many optimization problems (e.g., TSP, knapsack, job-scheduling), the best known algorithms have run-time's that grow exponentially ($O(2^n)$ or worse). Thus, you could wait centuries for the solution of all but the smallest problems!

Ways to handle these "hard" problems:

- Find the best (or a good) solution "quickly" to avoid considering the vast majority of the 2^n worse solutions, e.g., Backtracking (section 4.6) and Best-first-search-branch-and-bound
- See if a restricted version of the problem meets your needed that might have a tractable (polynomial, e.g., $O(n^3)$) solution. e.g., TSP problem satisfying the triangle inequality, Fractional Knapsack problem
- Use an approximation algorithm to find a good, but not necessarily optimal solution

Backtracking general idea: (Recall the coin-change problem from lectures 10 and 13)

- Search the "state-space tree" using depth-first search to find a suboptimal solution quickly
- Use the best solution found so far to prune partial solutions that are not "promising," i.e., cannot lead to a better solution than one already found.

The goal is to prune enough of the state-space tree (exponential is size) that the optimal solution can be found in a reasonable amount of time. However, in the worst case, the algorithm is still exponential.

My simple backtracking solution for the coin-change problem without pruning:

```python
def recMC(change, coinValueList):
    global backtrackingNodes
    backtrackingNodes += 1
    minCoins = change
    if change in coinValueList:
        return 1
    else:
        for i in coinValueList:
            if i <= change:
                numCoins = 1 + recMC(change - i, coinValueList)
                if numCoins < minCoins:
                    minCoins = numCoins
        return minCoins
```

Results of running this code:

- Change Amount: 63 Coin types: [1, 5, 10, 25]
- Run-time: 45.815 seconds
- Fewest number of coins 6
- Number of Backtracking Nodes: 67,716,925

Consider the output of running the backtracking code with pruning twice with a change amount of 63 cents.

Change Amount: 63 Coin types: [1, 5, 10, 25]	Change Amount: 63 Coin types: [25, 10, 5, 1]
Run-time: 0.036 seconds	Run-time: 0.003 seconds
Fewest number of coins 6	Fewest number of coins 6
The number of each type of coins is:	The number of each type of coins is:
number of 1-cent coins is 3	number of 25-cent coins is 2
number of 5-cent coins is 0	number of 10-cent coins is 1
number of 10-cent coins is 1	number of 5-cent coins is 0
number of 25-cent coins is 2	number of 1-cent coins is 3
Number of Backtracking Nodes: 4831	Number of Backtracking Nodes: 310

a) With the coin types sorted in ascending order what is the first solution found?

b) How useful is the solution found in (a) for pruning?

c) With the coin types sorted in descending order what is the first solution found?

d) How useful is the solution found in (c) for pruning?
e) For the coin-change problem, backtracking is not the best problem-solving technique. What technique was better?

3. a) For the TSP problem, why is backtracking the best problem-solving technique?

b) To prune a node in the search-tree, we need to be certain that it cannot lead to the best solution. How can we calculate a “bound” on the best solution possible from a node (e.g., say node with partial tour: \([v_0, v_4, v_1]\))?
2. To prune a node in the search-tree, we need to be certain that it cannot lead to the best solution. We can calculate a “bound” on the best solution possible from a node (e.g., say node with partial tour: \([v_0, v_4, v_1]\)) by summing the partial tour with the minimum edges leaving the remaining nodes going some place reasonable. Complete the backtracking state-space tree with pruning.
(a) What type of data structure would we use to find the most promising node to expand next?
- If we expand the most promising node first by visiting its children.
- If we calculate a "bound" estimate for each node that indicates the "best" possible solution that could be obtained from any node in the subtree rooted at that node, i.e., by "promising" following the most right branch.
- If using a particular search pattern in the space, the best-first search with branch-and-bound approach:

(b) Complete the best-first search with branch-and-bound space tree with pruning. Indicate the order of nodes expanded.
Approximation Algorithm for TSP with Triangular Inequality

Restrictions on the weighted, undirected graph \(G=(V, E) \):

1. There is an edge connecting every two distinct vertices.
2. Triangular Inequality: If \(W(u, v) \) denotes the weight on the edge connecting vertex \(u \) to vertex \(v \), then for every other vertex \(y \),

\[
W(u, v) \leq W(u, y) + W(y, v).
\]

NOTES:
- These conditions satisfy automatically by a lot of natural graph problems, e.g., cities on a planar map with weights being as-the-crow-flies (Euclidean distances).
- Even with these restrictions, the problem is still NP-hard.

A simple TSP approximation algorithm:

Step 1. Determine a Minimum Spanning Tree (MST) for \(G \) (e.g., Prim's Algorithm section 7.8.3)

Step 2. Construct a path that visits every node by performing a preorder walk of the MST. (A preorder walk lists a tree node every time the node is encounter including when it is first visited and "backtracked" through.)

Step 3. Create a tour by removing vertices from the path in step 2 by taking shortcuts.

1) (Step 1) Determine a Minimum Spanning Tree (MST) for \(G \) (e.g., Prim's Algorithm) if we start with vertex 1 in the MST. (Assume edges connecting all vertices with their Euclidean distances)

Prim's algorithm is a greedy algorithm that performs the following:

a) Select a vertex at random to be in the MST.

b) Until all the vertices are in the MST:
 - Find the closest vertex not in the MST, i.e., vertex closest to any vertex in the MST
 - Add this vertex using this edge to the MST

2) (Step 2) Determine the preorder walk of the MST.
3) (Step 3) Complete a tour by removing vertices from the path in step 2 by taking shortcuts.

a) Finish removing vertices from the preorder-walk path to create a tour by taking shortcuts:

\[1 2 3 8 3 2 6 5 7 5 4 5 6 2 1 \]

b) When scanning the above path, how did you know which vertices to eliminate to take a shortcut?

4) Let's determine how close our approximation algorithm gets to the actual TSP tour.

a) If we take the optimal TSP tour and remove an edge, what do we have?

b) What is the relationship between the distance of the MST and the optimal TSP tour?

c) What is the relationship between the distance of the MST and the distance of the preorder-walk of the MST?

d) What is the relationship between the distance of the preorder-walk of the MST and the tour obtained from the preorder-walk of the MST?

e) What is the relationship between the tour obtained from the preorder-walk of the MST and the optimal TSP tour?
The Final exam is Tuesday May 7th from 8:00 - 9:50 AM in ITT 328. It will be closed-book and notes, except for three 8" x 11" sheets of paper containing any notes that you want. (Plus, the Python Summary Handout) About 75% of the test will cover the following topics (and maybe more) since the second mid-term test, and the remaining 25% will be comprehensive (mostly big-oh analysis and general questions about stacks, queues, priority queues/heaps, lists, and recursion).

Chapter 6: Trees
Terminology: node, edge, root, child, parent, siblings, leaf, interior node, branch, descendant, ancestor, path, path length, depth/level, height, subtree
General and binary tree recursive definitions
Tree shapes and their heights: full binary tree, balanced binary tree, complete binary tree
Applications: parse tree, heaps, binary search trees, expression trees
Traversals: inorder, preorder, postorder
Binary search tree ADT: interface, implementation, big-oh of operations
Balanced binary search trees: AVL tree ADT: interface, implementation, big-oh of operations

File Structures - Lecture 24 handout:
http://www.cs.uni.edu/~fienup/cs1520s19/lectures/lec24_questions.pdf

We talked about how the in memory data structures need to be adapted for slow disks.
From this discussion you should understand the general concepts of Magnetic disks:
• layout (surfaces, tracks/cylinders, sectors, R/W heads)
• access time components (seek time - moving the R/W heads over the correct track, rotational
 delay - disk spins to R/W head, data transfer time - reading/writing of sector as it spins under the
 R/W head)
Hash Table as a useful file structure
B+ trees as a useful file structure - see web resources:
http://www.sci.unich.it/~acciaro/bpintrees.pdf

Chapter 7: Graphs
Terminology: vertex/vertices, edge, path, cycle, directed graph, undirected graph
Graph implementations: adjacency matrix and adjacency list
Graph traversals/searches: Depth-First Search (DFS) and Breadth-First Search (BFS)
General Idea of the following algorithms: topological sort, Dijkstra’s algorithm (single-source, shortest
path), Prim’s algorithm (determines the minimum-spanning tree), TSP (Traveling-Salesperson Problem)
Approximation algorithm to solve TSP, general idea of backtracking and best-first search
branch-and-bound.
You should understand the graph implementations and algorithms listed above. You should be able to
trace the algorithms on a given graph.