1. In the sum-of-subsets problem you are given as input:
 - a set of \(n \) positive integers (weights) \(\{ w_1, w_2, w_3, \ldots, w_n \} \), and
 - a target sum, \(W \)
with the task of finding all subsets that sum to the target sum, \(W \).

Consider an instance of the sum-of-subsets problem: For the weights of \(\{ 5, 6, 10, 11, 16 \} \), find all the subsets adding to 21.

To solve a problem using backtracking, you need to answer the following questions:

a) What should the state-space tree look like? (i.e., What would the "for each child c" loop iterate over?)

b) What state information is needed at each node?

<table>
<thead>
<tr>
<th>Global Problem-Instance Information</th>
<th>Starting Node - original call to start recursive backtracking function</th>
</tr>
</thead>
<tbody>
<tr>
<td>weights: 5 6 10 11 16</td>
<td></td>
</tr>
<tr>
<td>n: 5</td>
<td></td>
</tr>
<tr>
<td>W: 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c) Any alternate state-space tree which might be better for exploring subsets?

d) Without some pruning criteria (check for "promising" child node), how many nodes are in both of the above state-space trees?
e) What criteria can be used to determine if a child node \(c \) is NOT promising?

f) What information is needed by our promising function?

2. Consider customizing the Backtrack template for the sum-of-subsets problem. Use a single, “global”, current-node state which is updated before we go down to the child (via a recursive call) and undone when we backtrack to the parent.

Backtrack(recursionTreeNode p) {

treeNode c;
for each child c of p do # each c represents a possible choice
 if promising(c) then # c is "promising" if it could lead to a better solution
 if c is a solution that's better than best then # check if this is the best solution found so far
 best = c
 else # remember the best solution
 Backtrack(c) # follow a branch down the tree
 end if
 end if
end for
} // end Backtrack