Instruction-set Design Issues: what is the ML instruction faishat
ML instructior

Opcode Dest. Operand Source Operand.1.

1) Which instructions to include:
- How many?
- Complexity - simple “ADD R1, R2, R3”"
complex e.g., VAX
*“MATCHC substrLength, substr, strLength, str”
looks for a substring within a string

2) Which built-in data types: integer, floating point, charaeter,
3) Instruction format:

- Length (fixed, variable)

- number of address (2, 3, etc)

. field sizes

4) Number of registers

5) Addressing modes supported - how are the memory addresses of
variables/data determining

Lecture 2 -1

Number of Operands

3 Address 2 Address 1 Address O Address
(Accumulator (Stack machine)
machine)

MOVE (X < Y) MOVE (X < Y) LOAD M PUSH M
STORE M POP M

ADD (X <Y +Z) |ADD (X -X+Y) |ADDM ADD

SUB(X<Y-Z) |ADD(X<X-Y) |SUBM SUB

MUL(X «Y*Z) |MUL(X <X*Y) |MULM MUL

DIV (X <Y /2) DIV(X <X/Y) |DIVM DIV

D=A+B*C

3 Address 2 Address 1 Address O Address
(Accumulator (Stack machine)
machine)

MUL D, B, C MOVE D, B LOAD B PUSH B

ADD D, D, A MUL D, C MUL C PUSH C

ADD D, A ADD A MUL
STORE D PUSH A
ADD
POP D

Load/Store Architecture - operands for arithmetic operations must be

from/to registers

LOAD R1, B
LOAD R2, C
MUL R3, R1, R2
LOAD R4, A
ADD R3, R4, R3
STORE R3, D

Lecture 2 - 2

Flow of Control
How do we "jump around" in the code to execute high-level language
statements such as if-then-else, while-loops, for-loops, etc.

Two Paths Possik

—

TRUE if (x <y) then FALS
// code of then-body
else

Jump over

then-body
if x >=y

Execute
then-body

Jump ov) Execute
else-bod en/cg ci:fode of else-body eise-body
always after <

then-body \l,

Conditional branch - used to jump to "else" if x >=y
Unconditional branch - used to always jump "end if"

Labels are used to name spots in the code (memory)
("if:", "else:", and "end_if:" in below example)

Test-and-Jumpversion of the if-then-else (Used in MIPS)
if:
bge X, y, else

i end_if
else:

end_.ifl: |

Lecture 2 - 3

Set-Then-Jumpversion of the if-then-else (Used in Pentium)
if:

cmp X,y

jge else

i end_if
else:

end_.ifl: |

The "cmp" instruction performs x - y with the result used tahset
condition codes

SF - (Sign Flag) set if resultis <0

ZF - (Zero Flag) set if result =0

CF - (Carry Flag) set if unsigned overflow

OF - (Overflow Flag) set if signed overflow

For example, the "jge" instruction checks to see if ZF = 1 or $H.e., if
the result of X - y is zero or negative.

Lecture 2 - 4

Machine-Language Representation of Branch/Jump Instructions
(How are labels (e.g., “end_if") in the code located???)

a) direct/absolute addressing - the memory address of where the label
resides is put into the machine language instruction (EA, effeadigdieess =
direct)

e.g., assume label "end_if" is at address §000

AL instruction ML instructior
j end_if Opcode 8000

end_if:

How relocatable is the code in memory if direct addressing is used?
How many bits are needed to represent a direct address?

b) Relative/PC-relative - base-register addressing where the PC is the
implicitly referenced register

AL instruction ML instructior

while:
bge R8, R9, end_while PC = 4000 Opcode 8 | 9| 40

"end_while" label 40 addresses from "bge"

b while Opcode -40

end_while: « Y PC = 4040 Unconditional pc-relative
branches are possible too

Lecture 2 -5

Machine-Language Representation of Variables/Operands
(How are labels (e.g., “sum”, “score”, etc.) in the code local@??)

a) Register - operand is contained in a register

AL instruction ML instructior
add r9, r4, r2

Opcode9 (4 | 2

b) Direct/absolute addressing - the memory address of where the label
resides is put into the machine language instruction (EA, effeadigdieess =

direct)
e.g., assume label "sum" is at address @ “score” is at address 8004
AL instructior ML instructior

add sum, sum, score | Opcodé

\v

8000 8000 8004
32 bits 32 bits 32 bhits

c) Immediate - part of the ML instruction contains the value

AL instruction ML instructior
addi r9, #2

Opcode9 | 2

d) Register Indirect - operand is pointed at by an address in a register

AL instructior Memory
addri r9, (rd4), r2
Register File
ML instruction
Opcode9 |4 |2 /,»4000 -
SRR > 14 4000

EA = (r4)

Lecture 2 - 6

e) Base-register addressing / Displacement - operand is pointed at by an
address in a register plus offset

AL instructior Memory
Load r9, 40(r2)

ML instruction
Opcode9 40

Register File

4040

N

> 2 4000 ~4000+40

EA = (r2) + 40

Often the reference register is the stack pointer registeatmpulate the
run-time stack, or a global pointer to a block of global variables.

Stack

<—— Stack Pointer Register, $29/$sp

3
S
0p]
7 a
o gl
8 T
<
g o))
5) 38 «— Global Pointer Register, $28/$gp
8> O
s
<
Load R3, Y
Load R2, X

Add R1,R2,R] «— Program Counter, pc
Store R1, SUY

Program Area

Lecture 2 -7

f) Indexing - ML instruction contains a memory address and a register
containing an index

AL instruction ML instructior
addindex r9, A(r2)

Opcode9 | 8000 |2

ML instruction Reg. File

Opcode9 | 8000

EA=A+(12)

Useful for array access.

Lecture 2 - 8

Reduced Instruction Set Computers (RISC)

Two approaches to instruction set design:

1) CISC (Complex Instruction Set Computer) e.g., VAX

1960’s: Make assembly language (AL) as much like high-level language
(HLL) as possible to reduce the “semantic gap” between AL and HLL

Alleged Reasons:

- reduce compiler complexity and aid assembly language programming -
compilers not too good at the time (e.g., they did not allocate eegjist
very efficiently)

- reduce the code size - (memory limited at this time)

- improve code efficiency - complex sequence of instructions implemente
in microcode (e.g., VAX “MATCHCsubstrLength, substr, strLength,
str” that looks for a substring within a string)

Characteristics of CISC.:

- high-level like AL instructions

- variable format and number of cycles

- many addressing modes (VAX 22 addressing modes)

Problems with CISC:

. complex hardware needed to implement more and complex instruction:s
which slows the execution of simpler instructions

- compiler can rarely figure out when to use complex instructions i@erif
by studies of programs)

- variability in instruction format and instruction execution time made
CISC hard to pipeline

2) RISC (1980’'s) Addresses these problems to improve speed.

(Table 13.1 - characteristics of some CISC and RISC processors)

Lecture 2 -9

General Characteristics of RISC:
- emphasis on optimizing instruction pipeline
a) one instruction completion per cycle
b) register-to-register operations
c) simple addressing modes
d) simple, fixed-length instruction formats
- limited and simple instruction set and addressing modes
- large number of registers or use of compiler technology to optimize
register usage
- hardwired control unit

RISC Instruction-Set Architecture (ISA) can be effectivelystined

Lecture 2 - 10

