
Instruction-set Design Issues: what is the ML instruction format(s)

ML instruction

Opcode Dest. Operand Source Operand 1. . .

1) Which instructions to include:
� How many?
� Complexity - simple “ADD R1, R2, R3”

 complex e.g., VAX
“MATCHC substrLength, substr, strLength, str”

looks for a substring within a string

2) Which built-in data types: integer, floating point, character, etc.

3) Instruction format:
� Length (fixed, variable)
� number of address (2, 3, etc)
� field sizes

4) Number of registers

5) Addressing modes supported - how are the memory addresses of
variables/data determining

Lecture 2 - 1

Number of Operands

DIVDIV MDIV (X X / Y)bDIV (X Y / Z)b

MULMUL MMUL (X X * Y)bMUL (X Y * Z)b

SUBSUB MADD (X X - Y)bSUB (X Y - Z)b

ADDADD MADD (X X + Y)bADD (X Y + Z)b

POP MSTORE M
PUSH MLOAD MMOVE (X Y)bMOVE (X Y)b

0 Address
(Stack machine)

1 Address
(Accumulator
machine)

2 Address3 Address

D = A + B * C

PUSH B
PUSH C
MUL
PUSH A
ADD
POP D

LOAD B
MUL C
ADD A
STORE D

MOVE D, B
MUL D, C
ADD D, A

MUL D, B, C
ADD D, D, A

0 Address
(Stack machine)

1 Address
(Accumulator
machine)

2 Address3 Address

Load/Store Architecture - operands for arithmetic operations must be
from/to registers

LOAD R1, B
LOAD R2, C
MUL R3, R1, R2
LOAD R4, A
ADD R3, R4, R3
STORE R3, D

Lecture 2 - 2

Flow of Control
How do we "jump around" in the code to execute high-level language
statements such as if-then-else, while-loops, for-loops, etc.

if (x < y) then
 // code of then-body
else
 // code of else-body
end if

Two Paths Possible

TRUE FALSE

Jump over

Jump over

else-body else-body

Execute

Execute

then-bodythen-body if x >= y

always after
then-body

Conditional branch - used to jump to "else" if x >= y

Unconditional branch - used to always jump "end if"

Labels are used to name spots in the code (memory)
("if:", "else:", and "end_if:" in below example)

Test-and-Jump version of the if-then-else (Used in MIPS)
if:

bge x, y, else
. . .
j end_if

else:
. . .

end_if:

Lecture 2 - 3

Set-Then-Jump version of the if-then-else (Used in Pentium)
if:

cmp x, y
jge else
. . .
j end_if

else:
. . .

end_if:

The "cmp" instruction performs x - y with the result used to set the
condition codes
SF - (Sign Flag) set if result is < 0
ZF - (Zero Flag) set if result = 0
CF - (Carry Flag) set if unsigned overflow
OF - (Overflow Flag) set if signed overflow

For example, the "jge" instruction checks to see if ZF = 1 or SF = 1, i.e., if
the result of x - y is zero or negative.

Lecture 2 - 4

Machine-Language Representation of Branch/Jump Instructions
(How are labels (e.g., “end_if”) in the code located???)

a) direct/absolute addressing - the memory address of where the label
resides is put into the machine language instruction (EA, effective address =
direct)
e.g., assume label "end_if" is at address 800016

AL instruction ML instruction

j end_if Opcode 8000

end_if:

.

..

How relocatable is the code in memory if direct addressing is used?
How many bits are needed to represent a direct address?

b) Relative/PC-relative - base-register addressing where the PC is the
implicitly referenced register

AL instruction ML instruction

Opcode

Opcode

 40

 -40

while:

 bge R8, R9, end_while

 b while
end_while:

8 9
PC = 4000

PC = 4040

"end_while" label 40 addresses from "bge"
.
.
.

Unconditional pc-relative
branches are possible too

Lecture 2 - 5

Machine-Language Representation of Variables/Operands
(How are labels (e.g., “sum”, “score”, etc.) in the code located???)

a) Register - operand is contained in a register

AL instruction ML instruction

add r9, r4, r2 Opcode9 24

b) Direct/absolute addressing - the memory address of where the label
resides is put into the machine language instruction (EA, effective address =
direct)
e.g., assume label "sum" is at address 800016 and “score” is at address 8004

AL instruction ML instruction

add sum, sum, score Opcode 8000 8000 8004.
.. 32 bits 32 bits 32 bits

c) Immediate - part of the ML instruction contains the value

AL instruction ML instruction

addi r9, #2 Opcode9 2

d) Register Indirect - operand is pointed at by an address in a register

AL instruction

ML instruction

Memory
addri r9, (r4), r2

Opcode9 24

Register File

r4 4000

4000

EA = (r4)

Lecture 2 - 6

e) Base-register addressing / Displacement - operand is pointed at by an
address in a register plus offset

AL instruction

ML instruction

Memory
Load r9, 40(r2)

Opcode9 240

4000+40

Register File

r2 4000

4040

EA = (r2) + 40

Often the reference register is the stack pointer register to manipulate the
run-time stack, or a global pointer to a block of global variables.

Lecture 2 - 7

Add R1,R2,R3
Load R2, X
Load R3, Y

Store R1, SUM

P
ro

gr
am

 A
re

a

(X)
(Y)

(SUM)

5
3
0G

lo
ba

l
D

at
a

H
ea

p
S

ta
ck

Unused

A
 P

ro
gr

am
's

 A
dd

re
ss

 S
pa

ce

Stack Pointer Register, $29/$sp

Global Pointer Register, $28/$gp

Program Counter, pc

f) Indexing - ML instruction contains a memory address and a register
containing an index

AL instruction ML instruction

ML instruction

addindex r9, A(r2)
Opcode

Opcode

9

9

2

2

 8000

 8000

8010
EA = A + (r2)

8000

Reg. File

r2 10

Useful for array access.

Lecture 2 - 8

Reduced Instruction Set Computers (RISC)

Two approaches to instruction set design:
1) CISC (Complex Instruction Set Computer) e.g., VAX
1960’s: Make assembly language (AL) as much like high-level language
(HLL) as possible to reduce the “semantic gap” between AL and HLL

Alleged Reasons:
� reduce compiler complexity and aid assembly language programming -

compilers not too good at the time (e.g., they did not allocate registers
very efficiently)

� reduce the code size - (memory limited at this time)
� improve code efficiency - complex sequence of instructions implemented

in microcode (e.g., VAX “MATCHC substrLength, substr, strLength,
str” that looks for a substring within a string)

Characteristics of CISC:
� high-level like AL instructions
� variable format and number of cycles
� many addressing modes (VAX 22 addressing modes)

Problems with CISC:
� complex hardware needed to implement more and complex instructions

which slows the execution of simpler instructions
� compiler can rarely figure out when to use complex instructions (verified

by studies of programs)
� variability in instruction format and instruction execution time made

CISC hard to pipeline

2) RISC (1980’s) Addresses these problems to improve speed.

(Table 13.1 - characteristics of some CISC and RISC processors)

Lecture 2 - 9

General Characteristics of RISC:
� emphasis on optimizing instruction pipeline

a) one instruction completion per cycle
b) register-to-register operations
c) simple addressing modes
d) simple, fixed-length instruction formats

� limited and simple instruction set and addressing modes
� large number of registers or use of compiler technology to optimize

register usage
� hardwired control unit

RISC Instruction-Set Architecture (ISA) can be effectively pipelined

Lecture 2 - 10

