
PSW-process status word

R0

R1

R2

R31

PC, program counter

IR, instruction register

MAR

MBR

 ALU

A
dd

re
ss

 B
us

D
at

a
B

u s
C

on
tr

ol
 B

us

Memory

System BusCPU/Processor

(+,-,* , etc)

Add R1,R2

Control
 Unit

Register File

lecture 3 - 1

Instruction/Machine Cycle of stored-program computer - repeat all day

1. Fetch Instruction - read instruction pointed at by the program counter (PC) from memory into Instr. Reg. (IR)
2. Decode Instruction - figure out what kind of instruction was read

3. Fetch Operands - get operand values from the memory or registers

4. Execute Instruction - do some operation with the operands to get some result

5. Write Result - put the result into a register or in a memory location

Note: Sometime during the above steps, the PC is updated to point to the next instruction.

Each of these steps might require several suboperations to perform.

For example, when fetching an instruction:
MAR PC;b

MBR Mem; Read-memory control signal;b

IR MBR;b

lecture 3 - 2

Instruction Pipelining - assembly-line idea used to speed instruction completion rate

Assume that an automobile assembly process takes 4 hours.

Chassis Motor Interior Exterior

If you divide the process into four equal stages, then ideally

time between completions =
time to complete one car

of stages

Problems:
� stages might not be balanced
� overhead of moving cars between stages
� two stages need same specialized tool (structural hazard)

lecture 3 - 3

Instruction Pipelining Example: One possible break down of instruction execution.

Write operand to memory or register fileWOWrite
Operand

Perform the indicated operationEIExecute
Instruction

Fetch operands from memory or register fileFOFetch
Operands

Calculate the effective addresses of all operandsCOCalculate
Operands

Determine opcode and operand specifiersDIDecode
Instruction

Read next instruction into CPUFIFetch
Instruction

ActionsAbbreviationStage

Pipeline latches/registers between each stage. Hold temporary results and act like an IR. Some of the hardware
components (e.g., Memory and Register File) are shown as if they are duplicated, but they are not.

FI/DI
latch

DI/CO
latch

CO/FO
latch

FO/EI
latch

EI/WO
latch

FI DI CO FO EI WO

Decoder
ALU

ALU

ALU

Data Data
Memory Memory

Register

Register

Register
File

File

File

Instr.
Memory

Copy of
Instr.

Decoded
CO-ALU
do +

Opcode
operand
1 addr.
operand
2 addr
(or reg#)

operand
1 value

operand
2 value

opcode

dest. dest.
addr/reg addr/reg

dest
addr/reg

result
value

EI-ALU
do *

Reg.s
for EAs

Problems that delay/stall the pipeline:
� structural hazard - a piece of hardware is needed by several stages at the same time, e.g., Memory in FI, FO, and

WO. This might require stages to sequentially access the hardware.
� data hazard - an instruction depends on the results of a previous instruction which has not been calculated yet.

(RAW) read-after-write example: ADD R3, R2, R1 ; R3 R2 + R1b

SUB R4, R3, R5 ; R4 R3 + R5b

In what stage does the ADD instruction update R3?

In what stage does the SUB instruction read R3?

� control hazard - branching makes it difficult to fetch the “correct” instructions to be executed

lecture 3 - 4

Data Hazards - the problem

WOEIFOCODIFISUB R4, R3, R5
WOEIFOCODIFIADD R3, R2, R1

151413121110987654321Instructions
Time d

Solution Alternatives:
1) Introduce stalls

WOEIFOstallstallCODIFISUB R4, R3, R5
WOEIFOCODIFIADD R3, R2, R1

151413121110987654321Instructions
Time d

2) Add additional hardware (bypass-signal paths) to “foward” R3’s new value to the SUB instruction:

FI/DI
latch

DI/CO
latch

CO/FO
latch

FO/EI
latch

EI/WO
latch

FI DI CO FO EI WO

Decoder
ALU

ALU

ALU

Data Data
Memory Memory

Register

Register

Register
File

File

File

Instr.
Memory

Copy of
Instr.

Decoded
CO-ALU
do +

Opcode
operand
1 addr.
operand
2 addr
(or reg#)

old value
of R3

value of
R5

SUB

dest.
addr/reg

dest. reg
R3

R3 result
value

EI-ALU
do *

 M

 M

 U

 U

 X

 X

ADD

a bypass-signal path

No stalls needed in this case.

WOEIFOCODIFISUB R4, R3, R5
WOEIFOCODIFIADD R3, R2, R1

151413121110987654321Instructions
Time d

What would control the MUX?

lecture 3 - 5

MUX Operation:

0

1

2

3

OutputInputs

Control Signals - (binary #) to select
which input gets sent to output

Consider the following code: ADD R3, R2, R1
LOAD R4, 4(R3)

What would the timing be without bypass-signal paths/forwarding?

FILOAD R4, 4(R3)
WOEIFOCODIFIADD R3, R2, R1

151413121110987654321Instructions
Time d

This assumes that R3 cannot be written and the new value read in the same stage.

If we assume that R3 can be written in the first half of the WO stage and its new value read in the last half of the DI
stage, then we get:

FILOAD R4, 4(R3)
WOEIFOCODIFIADD R3, R2, R1

151413121110987654321Instructions
Time d

What would the timing be with bypass-signal paths?

lecture 3 - 6

FILOAD R4, 4(R3)
WOEIFOCODIFIADD R3, R2, R1

151413121110987654321Instructions
Time d

Draw the bypass-signal paths needed for the above example.

FI/DI
latch

DI/CO
latch

CO/FO
latch

FO/EI
latch

EI/WO
latch

FI DI CO FO EI WO

Decoder
ALU

ALU

ALU

Data Data
Memory Memory

Register

Register

Register
File

File

File

Instr.
Memory

Copy of
Instr.

Decoded
CO-ALU
do +

Opcode
operand
1 addr.
operand
2 addr
(or reg#)

operand
1 value

operand
2 value

opcode

dest.
addr/reg

dest
addr/reg

result
value

EI-ALU
do *

lecture 3 - 7

