
Serial Execution

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 1

time 

Pipelined Execution - Original RISC goal is to complete one instruction per clock cycle

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 1

time 

Advanced Architectures - multiple instructions completed per clock cycle

1. superpipelined (e.g., MIPS R4000)- split each stage into substages to create finer-grain stages

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 1

time 

Lecture 9 - 1



2. superscalar (e.g., Intel Pentium, AMD Athlon)- multiple instructions in the same stage of
execution in duplicate pipeline hardware

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 1

time 

Alternatively, several instructions in the "execute" stage on different functional units

Lecture 9 - 2



3. very-long-instruction-word, VLIW (e.g., Intel Itanium) - compiler encodes multiple operations
into a long instruction word so hardware can schedule these operations at run-time on multiple
functional units without analysis

Lecture 9 - 3



Itanium Processor 
Interesting Features:
� Uses explicit parallel instruction computing (EPIC) from very-long-instruction-word (VLIW)

architecture.  In EPIC the compiler encodes multiple operations into a long instruction word so
hardware can schedule these operations at run-time on multiple functional units without  analysis,
called static multiple-issue.  On the Itanium, a three instruction bundle is read.

template field maps instruction slots to execution types (integer ALU, non-ALU integer, memory,
floating-point, branch, and extended)

14278102211.5 GHz116 integer
4 memory
3 branch

2 FP

6Itanium 2

701379250.8 GHz94 integer
2 memory
3 branch

2 FP

6Itanium

SPEC
fp2000

SPEC
int2000

Transistors
(millions)

Max. 
clock 
rate

Max. ops.
per

clock

Functional
units

Max. instr.
issue per

clock

Processor

� Provides hardware support for efficient procedure calls and returns --  large number of registers
(128 general-purpose and 128 fl. pt. registers) with overlapping register windows  

Itanium:  first 32 registers for global variables and remaining 96 registers for local variables and
parameters.

Lecture 9 - 4



� Features to Enhance ILP:  
(1)  Predication of eliminate branches - 64 1-bit “Predicate registers”, 
(2) Hiding memory latency by speculative loads (control speculation), 
(3) Hiding memory latency when branching is involved (data speculation), and 
(4) Hardware support to dynamically unroll a loop.

Itanium AL Instruction Examples

add r1 = r2,r3    // r1 = r2 + r3
add r1 = r2,r3,1 // r1 = r2 + r3 + 1

Compare instructions - used to set predicate reg(s)
cmp.eq p3 = r2,r4 // p3 set if r2 equals r4
cmp.gt p2,p3 = r3,r4 // p3 = not p2

Predicate instruction
(p4) add r1 = r2,r3 // result of add only

// seen if p4 is true

Branch instruction

br.cloop.sptk loop_back // unconditional branch
(p5) br.cond.sptk // branch is taken if p5 is true

Lecture 9 - 5



Instruction groups - Set of instructions that do not have conflicting dependencies
� Can be executed in parallel
� Compiler/assembler can indicate this by ;; notation

Example: Logical expression with four terms
if (r10 || r11 || r12 || r13) {

/* if-block code */
}

can be done using or-tree evaluation
or   r1 = r10,r11    /* Group 1 */
or   r2 = r12,r13 ;;
or   r3 = r1,r2      /* Group 2 */
Other instructions   /* Group 3 */

Processor can execute as many instructions from group as it can

»Depends on the available resources

Lecture 9 - 6



Data transfer instructions

»Load and store instructions are more complicated than a typical RISC
processor

Load instruction formats
(qp) ldSZ.ldtype.ldhint r1=[r3] 
(qp) ldSZ.ldtype.ldhint r1=[r3],r2
(qp) ldSZ.ldtype.ldhint r1=[r3],imm9

»Loads SZ bytes from memory

–SZ can be 1, 2, 4, or 8 to load 1, 2, 4, or 8 bytes

–Example: 
ld8  r5 = [r6]
st4  r9 = [r9], 4  // postinc by 4

ldtype - This completer can be used to specify special load operations

ld8.a  r5 = [r6] // Advanced

ld8.s  r5 = [r6] // Speculative

ldhint - Locality of memory access
None – Temporal locality, level 1
nt 1 – No temporal locality, level 1
nt a – No temporal locality, all levels

Lecture 9 - 7



Three techniques for Reducing Branch Penalties:
Branch elimination - Best way to handle branches is not to have branches

Possible to eliminate some types of branches

          cmp.eq p1, p2 = r1, r2
(p1)   add r3 = r3, r1
(p2)   sub r3 = r3, r1

if (R1 == R2) 
     R3 = R3 + R1
else
     R3 = R3 - R1
end if

Branch speedup - Reduce the delay associated with  branches
Reorder instructions

sub r6 = r7, r8;;     // cycle1
sub  r9 = r10, r6
ld8  r4 = [r5];;       // cycle 2 (ld takes two cycles to fetch from L1)
add  r11 = r12, r4  // cycle 4

Reorder instruction
ld8  r4 = [r5];;       // cycle 1 (ld takes two cycles to fetch from L1)
sub r6 = r7, r8;;     // cycle2
sub  r9 = r10, r6
add  r11 = r12, r4  // cycle 3

Branch prediction - Discussed before

Control Speculation -- speculative load

Lecture 9 - 8



Control Speculation

Consider the following Itanium code:

cmp.eq p1, p0 = r10, 10 // cycle 0
(p1) br.cond end_if ; ; // cycle 0

ld8 r1 = [r2] ; ; // cycle 1 (loads take 2 cycles)
add r3 = r1, r4 // cycle 3

end_if: ...

We’d like to move the load (ld8) instruction earlier in the code to avoid the latency, but we don’t
know if the load should ultimately be performed because of the branch, and the load will not cause
an exception (e.g., r2 points to null).

The Itanium provides a speculative load (ld.s) instruction to use in these cases.

ld8.s r1 = [r2] ; ; // cycle -2 or earlier
. . .

cmp.eq p1, p0 = r10, 10 // cycle 0
(p1) br.cond end_if // cycle 0

chk.s r1, recovery // cycle 0
add r3 = r1, r4 // cycle 0

end_if: ...

recovery:
code to recover from the exception

If the ld.s instruction causes an exception, the exception is not raised immediately, but delayed until
the chk.s instruction is encountered.  If the branch is taken, the hardware ensures that the results
produced by the speculative load do not update r1.

Lecture 9 - 9



Data Speculation -- Ambiguous Data Dependency

Ambiguous Data Dependency - dependencies between load and store instructions which use pointers
to access memory

st8  [r9] = r6
ld8  r4 = [r5]

Since the pointer values (r9 and r5) are calculated at run-time and are not know by the compiler, a
store instruction to memory followed by a load instruction from memory would have a dependency if
two instructions referenced the same part of memory.

On the Itanium, advance load (ld.a) instruction is used to start a load well in advance of the
instruction that needs the value read.  Before using the value prefetched by the advance load
instruction, we can check to see if a subsequent store might have caused an ambiguous data
dependency using the check load (ld.c) instruction.  For example,

ld8.a  r4 = [r5] // cycle 0 or earlier
     . . .
sub  r6 = r7, r8 ;; // cycle 1

st8  [r9] = r6 // cycle 2
ld8.c  r4 = [r5]
add r11 = r12, r4 ;;

st8 [r10] = r11 // cycle 3

The advance load (ld8.a) starts the load well in advance of the “add” instruction that needs the value
loaded into r4.  If the store (st8) instruction refers to the same memory as the advance load, then the
value read into r4 is garbage.  If such a dependency exists, the check load (ld8.c) instruction
automatically reexecutes the load and the add instruction.

Lecture 9 - 10



Software Pipelining Example form text....

Lecture 9 - 11


