Linux Command Summary

Directory Navigation and Listing

Process Management

t00)

cd change to home directory ps —aux | grep uname |Ljist processes for uname
cd . g0 up to parent directory top Shows the real-time
processes
cd subdir change to subdirectory subdir kill -9 pid Kills the process with pid #
ls list content of current directory
ls -1 list content with details Keyboard Shortcuts
ls -a list content including hidden files <tab> Auto-complete partial file
name
Chrlsic Kill current
command/program
File Commands <Ctrl>+z Sleep current program
cp src dest copy src file to dest file <T> Recall previous command(s)
copy “recursively” spir directory to <Ctrls>id
cp -r sDir dDir [dpir directory (copies subdirectories . log-off and close terminal
exl1l

mv src dest

move - renames src as dest

rm fileName

removes file fileName

“Programming’ Tools

rm —-r dirName

removes directory recursively

nano file.c

Simple text-editor

rmdir dirName

removes empty dirName

emacs file.c

Better C/C++ editor

mkdir dirName

makes directory called dirName

chmod 750 filel

change permission of filel by
specifying a three digit octal # where
digits are owner, group, world

each octal digit in binary are:

read (4) ,write (2) ,execute (1)

gcc file.c
g++ file.cpp

-0 exeFile

C compiler: compile to a . out

C++ compiler: compile to a . out

Options:
compile to exeF1ile instead

cat filel

display filel to screen

./a.out

execute program in current

[132)

directory (*.”) called a.out

less filel

display £ilel with pagination
(space - next page, g-exit, T,d- keys)

time exeFile

run exefrile and print timing
when done

script out.txt

capture output to file out . txt
<Ctrl>+d toend

1) Log-on to student.cs.uni.edu using a Telnet/ssh client (e.g., PuTTY: http://www.chiark.greenend.org.uk/~sgtatham/putty/)
(On a MAC you can probably use: ssh userName@student.cs.uni.edu ina terminal to log-on)

2) Your initial log-in is the same as your UNI CatID with initial password of: 1234temp

3) For this activity I want you to:

* create and then move into a directory called hw4 to store files for this assignment

* use an editor (emacs or nano) to write a simple C program that prompts the user for their name and age, allows

them to enter it, and outputs it back for them (on next back page). Use the file name age. c

* compile the C++ to an executable file called age using: gcc -o age age.c

* when its working capture the interactive running of the program using: script out.txt to start the capture,
. /age to run the program, and <Ctr1>+d to end the capture

* display the contents of the out . txt to the screen using the 1ess out.txt command (g-to exit less)

4) Use a secure ftp client (e.g., FileZilla: https://filezilla-project.org) to copy hw4 to local computer
(On a MAC you can probably use: scp —r localDir userName@student.cs.uni.edu:/lecture4)

5) On your local computer zip the 1ecture4 directory and submit as Homework #4 at:

http://www.cs.uni.edu/~fienup/cs2420f13/homework/submissionDirections.htm

HW 4 Activity Page 1

/* File: age.c
Compile by: gcc age.c
Run by: ./a.out

*/

#include <stdlib.h>
#include <stdio.h>

const int SIZE 100;

int main(int argc, char * argv[]) {
char name[SIZE];

int age;

printf ("Enter your name: ");
scanf ("%s", name) ;
printf ("Enter your age: ");

scanf ("%d", &age);

age);

printf ("%$s your age is %d.\n", name,

return 0;

} // end main

NOTES:

1) array names contain pointers to the first element of array

2) C only has pass-by-value, so we must explicitly pass the
address of (using ‘&’) a variable to a function changing it

#include <stdlib.h>
#include <stdio.h>

// function prototypes

void getName (char []);
void getAge (int *);

const int SIZE 100;

int main(int argc, char * argv[]) {
char name[SIZE];

int age;

getName (name) ;

getAge (&age) ;

printf ("%s your age is %d.\n", name, age);
return O;

} // end main

void getName (char name[])
printf ("Enter your name:

scanf ("$s", name) ;
} // end getName

")

void getAge(int * age) {
printf ("Enter your age:
scanf ("%d", age);

} // end getAge

")

/* File: ageCndLine.c
Compile by: gcc -o ageCmdLine ageCmdLine.c
Run by: ./ageCmdLine Bob 13
Output: Bob your age is 13.

*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

const int SIZE

100;

int main(int argc, char * argv[]) {
int age;

char * name;

if (argc !'= 3) {

printf ("Usage %s firstName #age\n",
exit (-1);

}

argv[0]);

(char *)
argv([1l]);

name
strcpy (name,

sscanf (argv[2], "%d", &age) ;

printf ("%s your age is %d.\n", name, age);

return 0;

} // end main

malloc(sizeof (char) * (strlen(argv([1l])+1));

L/ageCmdLine\O|

NOTES:

3) argc is an integer containing the
number of command-line arguments
including the executable file name

4) argv is an array of char-pointers to the
the start of each null-terminated string
for the command-line arguments

HW 4 Activity Page 2

