
1. Assume that an automobile assembly process takes 4 hours.

Chassis Motor Interior Exterior

a) If the stages take the following amounts of time, then what is the time between completions of automobiles?

 Chassis 1 hour Motor 1 hour Interior 1 hour Exterior 1 hour

b) If the stages take the following amounts of time, then what is the time between completions of automobiles?

 Chassis 45 minutes Motor 1 hour Interior 1 hour & 15 minutes Exterior 1 hour

2. We could divide the instruction/fetch-execute cycle into stages for instruction pipelined, e.g,

Fetch Instruction, Decode Instruction, Fetch Operands, Execute Instruction, and Write Result.

Two approaches for designing a computer is CISC (Complex Instr. Set Computer - pre-1980) and RISC (Reduced

Instruction Set Computer post 1985). A CISC philosophy was to make assembly language (AL) as much like a

high-level language (HLL) as possible to reduce the “semantic gap” between AL and HLL. The rational for CISC

at the time was to:

� reduce compiler complexity and aid assembly language programming. Compilers were not too good during

the 50’s to 70’s, (e.g., they made poor use of registers so code was inefficient) so some programs were written

in assembly language.

� reduce the program size. More powerful/complex instructions reduced the number of instructions necessary

in a program. Memory during the 50’s to 70’s was limited and expensive.

� improve code efficiency by allowing complex sequence of instructions to be implemented in microcode. For

example, the Digital Equipment Corporation (DEC) VAX computer had an assembly-language instruction

“MATCHC substrLength, substr, strLength, str” that looks for a substring within a string.

The architectural characteristics of CISC machines include:

� complex high-level-like AL instructions as well as simple AL instructions

� variable format machine-language instructions (e.g., the DEC VAX instructions ranged from 2 to 57 bytes)

� many addressing modes (e.g., the DEC VAX had 22 addressing modes with some doubly indirect)

� micro-programmed control unit to execute instructions using a variable number of clock cycles

The architectural characteristics of RISC machines include: (emphasis on optimizing instruction pipeline)

� limited and simple instruction set

� few and simple addressing modes -- only reg.-to-reg. operations (only Load & Store instrs. access memory)

� simple, fixed-length instruction formats

� large number of registers so compiler technology can optimize register usage

� hardwired control unit - circuit used to drive the fetch-execute cycle by generating control signals for the CPU

a) Why are complex instructions of CISC (Complex Instr. Set Computer) machines difficult to pipeline?

b) Why are RISC machines usually Load & Store machines (i.e., only Load and Store instructions access

memory)?

Comp. Architecture Lecture 6 Name:_______________

Lecture 6 Page 1

3. The whole question refers to a pipelined, RISC machine with five stages:

� F, fetch - fetch the instruction from memory

� D, decode - determine the type of instruction and read any necessary register values

� E, execute - perform ALU operation or memory address calculation for LOAD or STORE instructions

� M, memory - access memory on LOAD or STORE instruction

� W, write - write register values

Problems that delay/stall the pipeline:

� structural hazard - a piece of hardware is needed by several stages at the same time, e.g., Memory in F, and

M. This might require stages to sequentially access the hardware, or duplicate into two memories.

� data hazard - an instruction depends on the results of a previous instruction which has not been calculated

yet. (RAW) read-after-write example: ADD R3, R2, R1 ; R3 R2 + R1b

SUB R4, R3, R5 ; R4 R3 - R5b

� control/branch hazard - branching makes it difficult to fetch the “correct” instructions to be executed

Pipeline latches/registers between each stage. Hold temporary results and act like an IR. Some of the hardware

components used (e.g., Memory and Register File) are shown as if they are duplicated, but they are not.

F/D
latch

E/M
latch

D/E

latch

M/W
latch

F D E M W

Decoder

ALU

ALU

ALU
Data

Memory

Register

Register

File

File

Instr.

Memory

Copy of

Instr.

Opcode

operand

1 addr.

operand

2 addr

(or reg#)

operand

1 value

operand

2 value

opcode

dest.dest.

addr/regaddr/reg

dest

addr/reg

result

value

a) Complete the following timing diagram. Insert stalls where necessary (assuming NO by-pass signal paths).

STORE R2, 0(R6)

LOAD R2, 8(R3)

ADD R3, R2, R1

ADD R2, R4, R5

WMEDFADD R1, R3, R4

2019181716151413121110987654321

Time dWithout by-pass

signal paths

Comp. Architecture Lecture 6 Name:_______________

Lecture 6 Page 2

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 1

time
Serial Execution

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 1

time
Pipelined Execution

F/D
latch

D/E
latch

M/WE/M
latchlatch

Fetch Decode Execute Write

Decoder

A
L

U

Data

Memory
Register

Register

File
File

Instr.

Memory

M

M
M

U

U
U

X

X
X

ResultResult
ValueValue

Memory

b) Complete the following timing diagram assuming by-pass signal paths as shown above.

STORE R2, 0(R6)

LOAD R2, 8(R3)

ADD R3, R2, R1

ADD R2, R4, R5

WMEDFADD R1, R3, R4

2019181716151413121110987654321

Time dWithout by-pass

signal paths

4. Control Hazards - branching causes problems since the pipeline can be filled with the wrong instructions.

IF: BEQ R3, R8, ELSE

ADD R4, R5, R6 /* ADD should not be executed if the branch is taken */

SUB R8, R5, R6

.

.

B END_IF

ELSE: MUL R3, R3, R2 /* MUL should not be executed if the previous B executes*/

.

.

END_IF:

a) During which stage is the target address (addr. of “ELSE” label) calculated for the BEQ instruction?

b) During which stage of BEQ instruction is the comparison between registers (R3 and R8) performed (i.e., when

is the outcome (taken or not taken) of the branch known)?

If we always (statically) continue to fetch sequentially until the outcome of a conditional branch is known:

c) How many cycle branch penalty for a taken outcome?

d) How many cycle branch penalty for a not-taken outcome?

Comp. Architecture Lecture 6 Name:_______________

Lecture 6 Page 3

“Beyond RISC” - goal of multiple instructions completed per clock cycle

superpipelined (e.g., MIPS R4000)- split each stage into substages to create finer-grain stages (start on half cycle)

Instruction 2

Instruction 3

Instruction 1

time (bold lines denote clock cycles)

superscalar (e.g., modern Intel, AMD processors)- multiple instructions in the same stage of execution in

duplicate pipeline hardware

� Instruction Fetch - obtain “next” instruction(s) from memory (I cache)

� Instruction Decode - decode instr(s) and rename user-visible registers to avoid data hazards (WAW:

write-after-write & WAR: write-after-read) introduced by out-of-order execution

SUB R3, R2, R5

ADD R4, R3, #1

ADD R3, R5, #1

MUL R7, R3, R4

� Instruction issue - sent instruction to reservations unit associated with an appropriate execution unit (integer

ALU, fl. pt. ALU, LOAD/STORE memory unit, etc.) to await execution

� Reservation station - dispatch instruction to execution unit when unit becomes free and all of the instruction’s

operand values are known, i.e., all RAW data dependences have cleared

� Instruction retire - writes results of potentially out-of-order instructions back to registers to ensure correct

in-order completion. Also, communicates with the reservation stages when instruction completion frees

resources (e.g., “virtual” registers used in register renaming)

Comp. Architecture Lecture 6 Name:_______________

Lecture 6 Page 4

