
Simple RISC instruction formats:

Arithmetic: add R1, R2, R3

opcode

opcode

opcode

opcode

opcode

 dest
 reg

 operand

 operand

 dest

 operand

 1 reg

 1 reg

 reg

 reg

 operand

 operand

 operand

 base

 2 reg

 2 reg

 1 reg

 reg

Conditional Branch: beq R1, R2, end_if

Arithmetic with immediate: addi R1, R2, 8

Load/Store: lw R1, 16(R2)

unused

offset to label

 offset from

Unconditional Branch/"jump": b someLabel PC-relative

 base reg

large offset from PC
or absolute address

all instruction 32-bits in length

 immediate
 value

RISC Instruction Pipelining Example: One possible break down of instruction execution.

� ALU or load instruction: write result into register fileWWrite-back

� load: read memory from effective address into pipeline register

� store: write reg value from ID stage to memory at effective address

MMemory

access

Calculate using operands prepared in D

� memory ref: add base reg to offset to form effective address

� reg-reg ALU: ALU performs specified calculation

� reg-immediate ALU: ALU performs specified calculation

� compare registers if condition branch and update PC if taken

EExecution /

Effective addr

Determine opcode, read registers, sign-extend immediate if needed,

compute target address of all branch, update PC if unconditional branch

DInstruction

Decode

Read next instruction into CPU and increment PC by 4 byte (to next

instruction)

FInstruction

Fetch

ActionsAbbreviationStage

Branch Prediction - predict whether the branch will be taken and fetch accordingly

Static Techniques:

a) Predict never taken - continue to fetch sequentially. If the branch is not taken, then there is no wasted

fetches.

b) Predict always taken - fetch from branch target as soon as possible

(From analyzing program behavior, > 50% of branches are taken.)

c) Predict by opcode - compiler helps by having different opcodes based on likely outcome of the branch

Consider the HLL constructs:

HLL AL

While (x > 0) do BR_LE_PREDICT_NOT_TAKEN R3, #0, END_WHILE

 {loop body}

end while END_WHILE:

Studies have found about a 75% successful prediction rate using this technique.

Comp. Arch. Lecture 7 Name:____________________

Lecture 7 - 1

Dynamic Techniques: try to improve prediction by recording program’s history of conditional branch

Problem: How do we avoid always fetching the instruction after the branch?

BEQ R3, R8, END_WHILE

ADD R4, R5, R6

F D E

F

Need target of branch, but its not calculated yet!
Plus, how do we know that we have just fetched
a branch since it has not been decoded yet?

time

Solution: Branch-prediction buffer (BPB)/Branch-History Table (BHT)- small, fully-associative cache to store

information about most recently executed branch instructions. In a BPB, the Branch instruction address acts as

the tag since that’s what you know at F. During the F stage, the Branch-prediction buffer is checked to see if

the instruction being fetched is a branch (if the addresses match) instruction.

Prediction

Bits

Target Address

of Branch

Branch Instruction

Address (tag field)

Valid

Bit

If the instruction is a branch instruction and it is in the Branch-prediction buffer, then the target address and

prediction can be supplied by the BPB by the end of F for the branch instruction.

If the branch instruction is in the Branch-prediction buffer, will the target address supplied correspond to the

correct instruction to be execute next?

What if the instruction is a branch instruction and it is not in the Branch-prediction buffer?

Should the Branch-prediction buffer contain entries for unconditional as well as conditional branch

instructions?

The table below shows the advantage of using a Branch-prediction buffer to improve accuracy of the branch

prediction. It shows the impact of past n branches on prediction accuracy. Typically, two prediction bits are

use so that two wrong predictions in a row are need to change the prediction

Notice:

1) the big jump in using the knowledge of just 1

past branch to predict the branch

2) notice the big jump in going from using 1 to

2 past branches to predict the branch for

scientific applications.

What types of data do scientific applications

spend most of their time processing?

What would be true about the code for

processing this type of data? .

Comp. Arch. Lecture 7 Name:____________________

Lecture 7 - 2

Predict Predict

PredictPredict

taken taken

not takennot taken

(branch) (branch)

(don't branch)(don't branch)

Not taken

N
o

t
ta

k
en

Taken

Taken

Taken

T
ak

en

Not taken

Not taken

00 01

10 11

Type of mix

n Compiler Business Scientific

0 64.1 64.4 70.4

1 91.9 95.2 86.6

2 93.3 96.5 90.8

3 93.7 96.6 91.0

4 94.5 96.8 91.8

5 94.7 97.0 92.0

Pentium 4 Processor

� 80486 - CISC

� Pentium

- some superscalar components

- two separate integer execution units

� Pentium Pro – Full blown superscalar

� Subsequent models refine & enhance superscalar design

Lecture 7 - 3

Pentium 4 Operation:

� Fetch x86 (CISC) instructions from memory in order of static program

� Translate each x86 instruction into one or more fixed length RISC instructions (micro-operations)

� Execute micro-ops on superscalar pipeline

- micro-ops may be executed out of order

� Commit results of micro-ops to register set in original x86 program flow order

� Outer CISC shell with inner RISC core

� Inner RISC core pipeline at least 20 stages

- Some micro-ops require multiple execution stages

Lecture 7 - 4

b) Trace cache (L1 cache) stores recently executed mico-op’s

BTB uses dynamic branch prediction (a BHT) (4-bits used via

Yeh’s algorithm). Static prediction used if not in BTB.

a) Fetch 64 bytes of Pentium 4 (CISC) instruction(s) from L2

cache and decode instruction boundaries and translates Pentium

4 (CISC) intructions into micro-op’s (RISC)

Lecture 7 - 5

d) Drive delivers decoded instructions from the trace cache to

the rename/allocate module.

c) Pulls micro-ops from cache (or ROM microprogrammed

control unit for very complex instructions) in program sequence

order

Lecture 7 - 6

Out-of-Order Execution Logic:

(ROB entry contains: state, memory address of generating instruction, micro-op, renamed register

Two FIFO queues to hold micro-ops until there is room in the scheduler.

One queue holds load or stores micro-ops

One queue hold the remaining nonmemory micro-ops

Queues can operate at different speeds

Allocate - allocates resources needed for

execution:

� stalls pipeline if a resource (e.g., register) is

unavailable

� a reorder buffer (ROB) to store information

about a micro-op as it executes

� one of 128 integer or float registers for the

result and/or one of 48 load buffers or one

of 24 store buffers

� an entry in one of the two micro-op queues

Lecture 7 - 7

Up to 6 micro-ops can be dispatched per cycle.Scheduler retrieves micro-ops from queues for

dispatching/issuing for execution if all operands and execution

unit are available.

Lecture 7 - 8

Compute flags - N, Z, C, V to use an input to the branchesExecution units retrieve necessary integer and floating point

registers

Lecture 7 - 9

If branch outcome does not match prediction, remove micro-ops

from the pipeline. Provide proper branch destination to the BTB

which restarts the whole pipeline from the correct target address.

Compares the actual branch result with the prediction.

Lecture 7 - 10

