Comp. Arch.

Simple RISC instruction formats:

all instruction 32-bits in length

Arithmetic: add R1, R2, R3

dest
opcode | oo

1 reg

operand| operand
2 reg

unused

Unconditional Branch/"jump": b someLabel

opcode

large offset from PC
or absolute address

RISC Instruction Pipelining Example: One possible break down of instruction execution.

Lecture 7

Name:

Arithmetic with immediate: addi R1, R2, 8

opcode

dest
reg

operand
1 reg

immediate

Conditional Branch: beq R1, R2, end_if

opcode

operand| operand

1 reg

2 reg

PC-relative
offset to label

Load/Store: Iw RI1, 16(R2)

opcode

operand
reg

base
reg

offset from
base reg

Stage Abbreviation | Actions
Instruction F Read next instruction into CPU and increment PC by 4 byte (to next
Fetch instruction)
Instruction D Determine opcode, read registers, sign-extend immediate if needed,
Decode compute target address of all branch, update PC if unconditional branch
Execution / E Calculate using operands prepared in D
Effective addr = memory ref: add base reg to offset to form effective address

= reg-reg ALU: ALU performs specified calculation

= reg-immediate ALU: ALU performs specified calculation

= compare registers if condition branch and update PC if taken
Memory M = load: read memory from effective address into pipeline register
access = store: write reg value from ID stage to memory at effective address
Write-back = ALU or load instruction: write result into register file

Branch Prediction - predict whether the branch will be taken and fetch accordingly

Static Techniques:

a) Predict never taken - continue to fetch sequentially. If the branch is not taken, then there is no wasted

fetches.

b) Predict always taken - fetch from branch target as soon as possible
(From analyzing program behavior, > 50% of branches are taken.)

c¢) Predict by opcode - compiler helps by having different opcodes based on likely outcome of the branch
Consider the HLL constructs:

HLL
While (x > 0) do

{loop body}

end while

BR_LE_PREDICT_NOT_TAKEN R3, #0, END_WHILE

AL

END_WHILE:

Studies have found about a 75% successful prediction rate using this technique.

Lecture 7 -1

Comp. Arch. Lecture 7 Name:

Dynamic Techniques: try to improve prediction by recording program’s history of conditional branch
Problem: How do we avoid always fetching the instruction after the branch?

time —»
BEQ R3,R8, END_WHILE F D E
ADD R4, R5, R6 F

Need target of branch, but its not calculated yet!
Plus, how do we know that we have just fetched
a branch since it has not been decoded yet?

Solution: Branch-prediction buffer (BPB)/Branch-History Table (BHT)- small, fully-associative cache to store
information about most recently executed branch instructions. In a BPB, the Branch instruction address acts as
the tag since that’s what you know at F. During the F stage, the Branch-prediction buffer is checked to see if
the instruction being fetched is a branch (if the addresses match) instruction.

Prediction
Bits

Target Address
of Branch

Valid |Branch Instruction
Bit |Address (tag field)

Not taken

Predict
taken

(branch)
01

Predict
taken

(branch)
00

Taken

Predict

not taken
(don't branch)
11

Not taken

Predict
not taken

(don't branch)
10

Not taken

If the instruction is a branch instruction and it is in the Branch-prediction buffer, then the target address and
prediction can be supplied by the BPB by the end of F for the branch instruction.

If the branch instruction is in the Branch-prediction buffer, will the target address supplied correspond to the
correct instruction to be execute next?

What if the instruction is a branch instruction and it is not in the Branch-prediction buffer?

Should the Branch-prediction buffer contain entries for unconditional as well as conditional branch
instructions?

The table below shows the advantage of using a Branch-prediction buffer to improve accuracy of the branch
prediction. It shows the impact of past n branches on prediction accuracy. Typically, two prediction bits are
use so that two wrong predictions in a row are need to change the prediction

Notice:

Type of mix . o .
n Compiler Business Scientific 1) the big jump in using the knowledge of just 1
0 64.1 64.4 70.4 past branch to predict the branch
1 91.9 952 36.6 2) notice the big jump in going from using 1 to
2 93.3 96.5 90.8 2 past branches to predict the branch for
3 93.7 96.6 91.0 scientific applications.
4 94.5 96.8 91.8 What types of data do scientific applications
5 94.7 97.0 92.0

spend most of their time processing?
What would be true about the code for
processing this type of data? .

Lecture 7 -2

Pentium 4 Processor

e 80486 - CISC
* Pentium
- some superscalar components
- two separate integer execution units
* Pentium Pro — Full blown superscalar
* Subsequent models refine & enhance superscalar design

— L2 Cache and Control

¢
¥

L]

BTB

T
@

w

3.2 GB/s System Interface
>

Integer Register File
=|[=]1==
£l] e

BTEB & I-TLB
L 4
Fetch/Decoide
¥
Trace Cache
Rename/Alloc
Y
pop Queues
Schedulers

v vvve ¥
L1 D-Cache and D-TLBE

ALL

=
= FP move
— E ™ Fpestore ™
3 E] FMul
peode —p{ & [ep| Fadd
AGL = address genemtion unit ROM b

BTE = hranch tamget bulTer
[>-TLE = data tranmslatiom lookaside buffer
ITLE =instruction trarslaton lookaside huffer

Lecture 7 -3

Pentium 4 Operation:
Fetch x86 (CISC) instructions from memory in order of static program

Translate each x86 instruction into one or more fixed length RISC instructions (micro-operations)

Execute micro-ops on superscalar pipeline
- micro-ops may be executed out of order

Commit results of micro-ops to register set in original x86 program flow order

Outer CISC shell with inner RISC core
Inner RISC core pipeline at least 20 stages

- Some micro-ops require multiple execution stages

TCNxt IP | TC Fetch |Drive|Alloc] Rename | Que | Sch | Sch | Sch |Disp | Disp| RF | RF
| ! L ! ! ! L ! ! ! ! ! ! !

TC Mext 1P = frace cache next instruction pointer Kename = regisier renaming

TC Betch = trace cache fetch
Alloe = allocate

(Jue = micm-op queting
Seh = micw-op scheduling
IMsp = | Mspaich

HE = register file
Bx = execule
Flgs = flags

Br Ck = branch check

F Y

+ » L2 Cache and Control
_E 'y —
= BTB
E 3 3 _
g
=
&
L3
e]
'E w
£ S EREIIREIIRE
A — & » g‘ —» =
= 13| | 2 2| |
4} ﬁ = é E_
¥
peode | |
AGH = address genemtion unit ROM —

BTE = hranch target buffer
D-TLE = dala translation lookaside bulfer
I-TLE = instruction translation lookaside bulTer

v+ v v v

Integer Register File

E3E

clE E.lE.l

PNEDS

v

AGU

|
E

AGU

FF movie
FP stute

v

| FP Register File | |

FMul
Fadd

L

L1 D-Cache and D-TLB

Lecture 7 - 4

L2 Cache and Comvtrol '—1

ETE [|+ gl

; - - - AT i
—h% Al E
—- Al P
al gl 2| |3 [of [oFEEST |8
ol EE = 2 e |E
“aEabliakmEnE F
ol 18 2] |5 :
-I-E Frns (- &

anl. —* Fop

(a) Generation of mico-ops

L2 Cache and Comtool "—1

]L ETE B AQU
_ -+ 5 .
-lll-E1 AL ﬁ

a —- AlA
al 12| 2| |2 § N %

: 7 z = -

——rg—i 'E I_.E_.GI_FE-* ALY P
HEBEIREE F]
Bl |2 & 2l 1B 12 M =
ml |2 | B gl |= &
-Eﬁﬁ'ﬂ'ﬂ-tﬁ
| = "

ROML e B e Bl

{b) Trace cache next instruction peinter

a) Fetch 64 bytes of Pentium 4 (CISC) instruction(s) from L2
cache and decode instruction boundaries and translates Pentium
4 (CISC) intructions into micro-op’s (RISC)

b) Trace cache (L1 cache) stores recently executed mico-op’s
BTB uses dynamic branch prediction (a BHT) (4-bits used via
Yeh’s algorithm). Static prediction used if not in BTB.

Lecture 7 -5

L2 Cache and Control ‘—1 L2 Cache and Contrel [t
ETE Bl JL BTE Bl
£ — — | PRM® i — | A=
5 ool - | i [t -
al | g |of LRIEEED (2] |3 g | 2| L2 lo] |eIERED |2
ANE IR EREREG 3| [EL L) 2 LgF| I3 JE0IF E
Homi o L o Homi o o
al (5| [2| 2] |2 1B - f— HCIRERER RERER: — E
B | = = al A & AR = o 3| | @
—+ o (e Fns S el 4 Lanf 178) S
ol ee| Fop o™ Lu| Foip
ROMU RO
() Trace cache fetch (dj Drive
c¢) Pulls micro-ops from cache (or ROM microprogrammed d) Drive delivers decoded instructions from the trace cache to
control unit for very complex instructions) in program sequence | the rename/allocate module.
order

Lecture 7 -6

Out-of-Order Execution Logic:

| L2 Cache and Controel

L2 Cache and Control |-1_

g

| ik | EE N
- — | pEeE—L — — = | P .
MET = N E
e 5 el] : — :
al 12 | & 2 |z |leMElem |8 a1 | 2 I E e
Bl E 2 = |3 |2LI™ K HAERE 2 - Y =
;-‘E-’ S E gl_.E-h g B0 = ﬂ—;-pa—p G 'E_.gl_,.é- g
L b e B] e
m| |5 g g % —}_"E m| |2 2 Z % 'E

- : g

FRERER N BEREIN | |5| (&[] E] 2 i ;
o of Ems | 2 - 2
— = — = R i — — i

| el Fip —

() Allpeate; Register renaming {1 Micvo-op guening

(ROB entry contains: state, memory address of generating instruction, micro-op, renamed register

Allocate - allocates resources needed for Two FIFO queues to hold micro-ops until there is room in the scheduler.
execution: One queue holds load or stores micro-ops
» stalls pipeline if a resource (e.g., register) is | One queue hold the remaining nonmemory micro-ops

unavailable

* areorder buffer (ROB) to store information | Queues can operate at different speeds
about a micro-op as it executes

* one of 128 integer or float registers for the
result and/or one of 48 load buffers or one
of 24 store buffers

* an entry in one of the two micro-op queues

Lecture 7 -7

L2 Cache and Contraol 1 L2 Cache and Cormvtrnl I

ETE [e ETE] A
S o ol e i I S ey —
= E-| ALl 3 — E.I “ﬂ] 3
b= - b=
o = ME o] £ & = os1i]
N AR BEN w= =l E[E 2] E £ o -
—I—ig—b E T E _"'-u-h O = _"":ii"" "E '.I_"'E_"' _"E* e =
4l 2] | 2 = — IR HEEIRE < |2 2
ml |2 = g i~ ﬁ ™ E 0 = o g £ & =
= 7] ; é =, - = o ; é =, i
[Wi] [T b o [T e
-n-EnlE'mH-l-E *’:ﬁnl:"'mi-pé
- z B - t - z B -
RO n B e i ROME b FOD
(2 Micto-op sche duling {h) Dispatch
Scheduler retrieves micro-ops from queues for Up to 6 micro-ops can be dispatched per cycle.

dispatching/issuing for execution if all operands and execution
unit are available.

Lecture 7 - 8

L2 Cache and Contraol ‘—1

ETE
_
.
3 - o z m m =
SRR E R E
E—lé—r o R "E CE:H_E :
£ 5 g E 2|2 E
AR = z |2 |7 ¥
—pﬁﬂFlT.lﬂ—lE
—— | — = B a
ROM]| ol feof Fop
(i) Register file

L2 Cache and Cormvtrnl =

JL ETE T
i . O
wf £
=+ S beefia]
m o z W wml]2
312 2| 1B 3] [eeEemm |2
;"'a-‘v —l-'E—l-EI—lIE-' +{a1s] E
o 'E g E E E]—'E
B | = = @l 2] I° ¥
-.-EMFDI-Q
i - = ¥
ROML ~+ b FOD

{J) Execute; Flags

Execution units retrieve necessary integer and floating point
registers

Compute flags - N, Z, C, V to use an input to the branches

Lecture 7-9

L2 Cache and Corvtrol ‘1 L2 Cache and Cormtrnl =

ETE B e -[-
| P . > .
iE | - ;
: e a1 . : — .
£ = | 53] u

al [F] | 2 (o] |elEem |2 al 12 | = Eoz| |2f 2
AREIREE e = = AREIREE e = =
ol e - e I rh‘E-—hgl-—rE"' He = =18 © .-‘E—FE,—-E" =
Homi -1 b o Homi -1 o
ol 13]2 (| 12 [2f B m—3 1RERER BERER: E
AR = E al | e al e = E al [« N
454%5*5 454&1‘!45
= || 3 = — || & ¥

rROM| e s Fo ROML mi b

(k) Branch check {1y Evanch check result
Compares the actual branch result with the prediction. If branch outcome does not match prediction, remove micro-ops

from the pipeline. Provide proper branch destination to the BTB
which restarts the whole pipeline from the correct target address.

Lecture 7 - 10

