Comp. Arch. Test 2 Name:

1. Some characteristics of a “good” parallel program are correctness (i.e., gives the correct answer), performance,
and scalability (i.e., speedup continues to improve as the number of processors increases).

a} Explain why correctness of a parallel program (e.g., pthread’s program) is more difficult than the corresponding
sequential program.

C{Cf{“:\sﬂS h p*lxﬁ/@ﬂ[}\,Ur/j “{D /Qe ,/C_(_)@ V\ﬁel\’\@%‘CJ) @?,5‘/
«:’é - UP &(Mj O’Q \C)LLL/@”O V/wkdg,
~ § >/r’\ CL\fonjiﬁf{“fb/] mj/f' A é'f/“#“/\éw |

AX geql/l@”"l"‘ﬁl)O‘Z)W‘ 1%5 mJ’Z}{\f?j “fo C(;@k}lé‘{f{(éfz/ﬂ//l

b) When designing a parallel program, we focus on data parallelism instead of task parallelism since “task
parallelism does not scale well with the number of processors, P. Explain why task parallelism does not scale well
with P. . " o

- QQ(/A +4 f/C ”U&@J a separalc P”f\o‘ﬁ pavy imstead 0'(“
. %A@ (omp()ﬁfn? &a‘“{ﬁ i Dfﬂ’\@j Prisors,

~ ta§ é’{ migbd faye cQP/a e’moﬁwtf‘fj SO HM""\/ (G -
d// l\f()rk- gl‘"”lﬁi{ﬂfan@ouj/t/, '

2. Some categories of performance loss in parallel programs are: -

Parallelization overheads: communication, synchronization, computation, memory

Non-parallelizable code - Amdahl’s [aw

Idle processors - load balancing, memory-bound computations

Contention for shared resources

Work (and corresponding data) can be allocated statically to threads/processes or dynamically via a work queue,
a) What type of performance loss are you trying to avoid by using dynamic allocation via a work queue? (explain)

L - L] L]

I)(@ DCoceff 875

b) What new overhead might you introduce to manage a work queue to dynamically allocate work?
{)O]LOA‘{"t‘q', N) a}}; , A : :
-~ S\//] (flufffﬂf i (e N bror f@‘*\j 4 Con 1, o gesy Wa/‘ff ?’7}&!(?@4.(,.
G A\‘}O/‘f{"f’l‘{ﬁ-\ NU S‘Af&f"@- regnrce —noorlc Trent

<

Page 1

Yy o
R

Comp. Arch. Test 2 Name:
3. My 1D array summation program used a block allocation of the array to threads:
. : length'=16 £=4 o .::
array [2]3]of2]3]s[1]ofo[1]s]2]2]s]1]o]
: _ —

Thread 0 Thread1 = Thread 2 ' “'Thread3 =

Instead consider using a cyclic allocation of the array to threads:

array |2 |3(012]3{33110j0}1|3|2|2(3]1]¢0

Thread allocation: L, T LL T, 4LLTLELTLLLETLTTTNTTETE

Compared to block allocation, do you think that cyclic allocation would increase execution time, decrease execution
time, or have no impact? (Justify your answer)

Tacrease. exewrtion 1me witheyelic allocitinn due 4o

o Saceeased bt orate (yc(t‘cazdﬁ oaly use one yalue
|7e Caclvca lM.ei [WL\A?, |

4. Constder the given 1D array summation thread code which uses a block allocation, but has each thread update a
global variable sum.

vold * threadPartialsum{void * args) {

a) Would this code give the correct answer? (Justify your
int i, threadid;

Nes Sineonly ong Hhped) | e
;Z | Q é(@}f@f + Y (0é { float * myArray;
A SU"#\ start_index = ({RANGE *) args)->start_index;
at a time, . et sy et

myArray = ({RANGE *) args)->arrayToSum;

b) Could thi lock? i - answer
) Could this code deadlock? (Justify your answer) pthread_mutex_lock(&updatesunLock):

N. ¢) for (i=start_index; i <= end_index; i++) {
[\/O)S ! A-\CQ‘ OV\lY one. M(ﬂtd){ sum += myArray[i]; // update global sum
4/ -l!Ll lﬁq H } /% end for (1 */
..... 3 ' * . hread k k);
(6 O D SO no @_’ V\Cl/lﬂf/\ Wd ﬂ, pthread_mutex_unlock(&updateSumLock)

} // end threadPartialSum

c) Suggest ways to improve this code.

Om/y One, ‘”f“‘l’\.\ﬁeaﬂ jal\f?ﬂ Summa‘ﬁ'oﬂ ﬂf A 7/723131.,29

N paealled 50’”/0“;("’"7{’“" l’e’”ﬁ ““Z”""f/ua Many toassr both
— Mplle.. MU‘L(’,W +0 Groval “sym f.::ﬁyAwa;l]‘ o 4 [et
- In io@,o]SWV‘ mh local vﬁmkélé) ﬁf{;#;, Ay /{“P%‘ﬁf /g)gf@

e C(){)y ,,_)C ﬁ(S -{»9 W\)//!thy [ffj ST~ Ne N (?gﬁ',(; {()3,, ﬁ-?u‘?’“‘é’,&f bage 2

e

l) C

Comp. Arch. Test 2 Name:
S. Consider a pthread solution for the Red/Blue computation which simulates two interactive flows:
° an n X n board is initialized so cells have one of three colors: red, blue, or white, where white indicates empty

cells
* in the first half step of an iteration, any red color can move right one cell if the cell to the right is empty (white)

* in the second half step of an iteration, any biue color can move down one cell if the cell below is empty (white)
(the case where red vacates a cell during the first half of an iteration and blue moves into it during the second

half of an iteration is allowed)
¢ the board wraps around to the opposite side (i.e., left-to-right; top-to-bottom) when colors reach the edge
¢ viewing the board as overlaid with ¢ x 7 tiles (t evenly divides n), the computation terminates if any tile’s colored
squares are more than ¢% one color (i.e., ¢% of tile blue or ¢% of tile red)
a) How would you assign work to each pthread (i.e., decompose the board so each pthread was responsible for
updating a portion of it)?

f“]p x é(;f\ We VW?/Z’“{ Jf&am/gam by V0 s @w?p“‘///ég

[0 Copd m-/"?/y ff’c’j oé@(ow/y& S’Y"/!b«\

.)
U sSe. '“I"l/yp é@(;g/w@ Vﬁ: - (asfw'»«v‘l"%'; new = A é’k’f‘/&

ton
il oo S

A, (R R

b) Desc{g\zbe a hlgh-levei?,lg(gghrfl for tl}e f}ﬁnct?@ bn by eaclif{/nead include s nchlomzatl’(gﬁ { *_'_‘: - f:ﬁ J{ w 9

)\ ‘e Fi’“ké) ("

CAGC(: 4%';%}%\ %' ¢ I{W 4’1)/ -.h ¢ >C’«§"/ vse mé«‘f«:,&’ ﬁl J‘e?’ﬁf
Bep “,

i

Q.‘i!v’f’\ S

Cﬂ(c/ £ E wpiz*z"@(ﬁ V\?/a 05'!“//%’1{ Bf‘“ Fow ¢ 4 #%?Emf/ u
V‘t?[!’h{ffg/(f’ ﬁ'&" In New })gqqﬁ ('(or;/ ve.S v[’méaf}é-r’ “fl)a)

3 sl . ((!1"‘ ’éf
bﬁ/ﬁ; !@ - U A 4 (‘TV"S %&ﬁg éﬁﬁ@:/}% 0

B fhveaf N | ace o
Swip "l@!w & yal Poinfe, - “dpf,
(n ‘/ ’{" 1 ¢ g ELF gings ;.

bdf} Tf';ﬂ O 4:(/ Jj"é’*mf:r

----- W /m,y%» B ooty e v o vnns

{,,M\ W hi e (;Q@, t@@%fﬁé et WJ}M

" L fag“é%’
af

b“"“”"@f’“ 4 Jﬁma.ﬁf

fZej

el

