
EXTRA CREDIT HW #8: Implement the 2D SOR algorithm using CUDA on the Tesla C2070 GPU.

(Recall: 2D SOR - on each iteration replace all interior values by the average of their four nearest neighbors)

Simplifying assumption: square array nxn interior (Let’s handle n not matching the dimensions of the grid of threads)

a) Maximum threads per block is 1024 (210). If we want to make it 2-dimensional (and square), what would the

dimensions of the thread block (DIM by DIM)?

b) If we want to “tile” blocks across the n x n interior of the array, what is the dimension of the grid of blocks?

#define DIM

#define threadsPerBlock

dim3 threads(,);

dim3 blocks(,);

1

1

1
1

1
1

1

1
1

1

1
1

1
1

1
1

1

1
1

1
1

1

1
1

1

1
1

1
1

1
1

1

1
1 0

 0 0

0

0
0

0
0

0

0
0

0

0
0

0
0

0
0

0

0
0

0
0

0

0
0

0

0
0

0
0

0
0

0

0
0

 n

. . .

. . .
.
.
.

n

block(1,4)block(1,3)block(1,2)block(1,1)block(1,0)

block(0,4)block(0,3)block(0,2)block(0,1)block(0,0)

blockIdx.y blockIdx.x

gridDim.x blocks in the x dimension

g
ri

d
D

im
.y

 b
lo

ck
s

in
 t

h
e

y
 d

im
en

si
o

n

"global thread" x, y calculated by:

x =

y=

(0,0) (0,1) (0,2)

(1,0)
(2,0)

threadIdx.x
threadIdx.y

offset is the 1-d index from the beginning of the "2-d matrix":

offset =

offset

left =

right =

top =

bottom =

blockDim.x

b
lo

ck
D

im
.y

left right

 top

 bottom

Comp. Arch. Lecture 27 Name:________________

Lecture 27 Page 1

c) Design the host’s algorithm:

d) Design the device’s kernel:

Comp. Arch. Lecture 27 Name:________________

Lecture 27 Page 2

