
EXTRA CREDIT HW #8:  Implement the 2D SOR algorithm using CUDA on the Tesla C2070 GPU.

(Recall:  2D SOR - on each iteration replace all interior values by the average of their four nearest neighbors)

Simplifying assumption: square array nxn interior (Let’s handle n not matching the dimensions of the grid of threads)

a)  Maximum threads per block is 1024 (210).  If we want to make it 2-dimensional (and square), what would the

dimensions of the thread block (DIM by DIM)?

b)  If we want to “tile” blocks across the n x n interior of the array, what is the dimension of the grid of blocks?

#define DIM

#define threadsPerBlock 

dim3 threads(                                                        ,                                                  );

dim3 blocks(                                                         ,                                                    );
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gridDim.x blocks in the x dimension
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"global thread" x, y calculated by:

x =

y=

(0,0) (0,1) (0,2)

(1,0)
(2,0)

threadIdx.x
threadIdx.y

offset is the 1-d index from the beginning of the "2-d matrix":
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c)  Design the host’s algorithm:

d)  Design the device’s kernel:
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