Fall 2013 Narne: Mqu F.
Computer Architecture Test 1

Question 1. (4 points) Indicate whether each of the following statements about programmed I/O and
interrupt-driven I/O is True or False,

a) | programmed 1/0 is more appropriate for embedded systems than PCs (personal computers) | (Trle > False

b) | interrupt-driven I/O allows the CPU to perform useful work while the /O is performed (fﬁmé) F aise
c) | programmed 1/0 allows the CPU to perform useful work while the 1/0 is performed (False
d) | both use interrupts to indicate when the I/0 is complete Tt uek F alsé

Question 2. (6 points) Indicate whether each of the following statements about interrupt-driven /0 and DMA
(direct-memory access) is True or False.

a) | interrupt-driven I/O is more appropriate for block-oriented /O devices than DMA True (ﬁ?‘ alsé)
b) | interrupt-driven I/O allows the CPU to perform useful work while the I/O is performed (Ttue/ False
c) | DMA allows the CPU to perfoim useful work while the I/O is performed ¢True) False
d) | both use interrupts to indicate when the I/0 is complete e’ TFalse
¢) | interrupt-drive I/O passes data through a CPU register during I/0 ruc) False
f) | DMA passes data through a CPU register during /O True (False

For questions 3 - 6, indicate all of the hardware support needed from the list (a-f) at the bottom of the page.
(circle all the appropriate letter(s) (a-f) by the question)

Question 3. (3 points) On a paged, multiprogrammed, multi-user computer system that uses memory-mapped
I/0, indicate what hardware support for the operating system is needed to guard against infinite loops in user -
programs.

Circle all that apply a __.-<b c @ @

Questxon 4, (3 pomts) On a paged, multiprogrammed, multi-user computer system that uses memory-mapped
1/0, indicate what hardware support for the operating system is needed to restrict a user program to its own main
memory address space,

Circle all that apply: a b @ d e f

Question 5. (3 points) On a paged, multiprogrammed, multi-user computer system that uses memory-mapped
1/0, indicate what hardware suppott for the operating system is needed to restrict a user program from accessing
other users’ data files

~ Circle all that apply: a b @ d e f

Question 6. (3 points) On a paged, multiprogrammed, multi-user computer system that uses I/Q instructions,
indicate what hardware support for the operating system is needed to restrict a user program from accessing other
users' data files

Circle all that apply: a @ c d e f

Hardware support: (some may be used multiple times and some may not be used at all)

a) privileged LOAD and STORE instructions that can only be executed by the CPU running in system mode

b) privileged I/O instructions that can only be executed by the CPU running in system mode

c¢) virtual-to-physical address translation that only maps to memory frames containing the process being executed
d) CPU timer that traps/interrupts to the operating system when it expires

¢) privileged instruction to set the CPU timer that can only be executed by the CPU running in system mode

) privileged instruction to read the CPU timer that can only be executed by the CPU running in system mode

T

Fall 2013 Name:

Question 7. (12 points) Suppose we have 32-bit memory addresses, a byte-addressable memory, and a 2 MB (2%
bytes) cache with 64 (2°) bytes per block. 2.{ | S

... a) How many total lines are in the cache? % o z / (A g)(

4.~ b) If the cache is direct-mapped, how many cache lines could a specific memory block be mapped to? /

. ¢) If the cache is direct-mapped, what would be the format (a @its, cache line bits, block offsetz'lt,‘s} of the
address? (Clearly indicate the # of bits in each) X l (- *L‘f;’f_ 1 g .‘:;{?MF‘_‘QM@_'T”

I| W.,iffﬁme_ e @‘Pﬁg;

T d) If the cache is 4-way set associative, how many cache lines could a specific memory block be mapped to?

: (5 Y
L. e} If the cache is 4-way set associative, how many sets would there be? A . ? (fé{j

.. P
" f) If the cache is 4-way set associative, what would be the format of the address? [C‘learly indicate # of bits in each)
o L4674 13 -6ds Cebfs

i - l a9 |9 %i:ilﬂ\%ﬁ
Question 8. (15 points) Consider a demand paging system-witlr 1024-byte pages.

Process A Page Table ©
Valid bit Physical Process A
Frame # (Loaded Tn Memory) Frame Memory Process B page 0
0 2 { o, Number page 0 page 1
L ge
Py i 3 | \‘ 0 | page 0 of B page 1 page 2
- 2 { ! ! 1 | page2of A page 2 page 3
P 3 - 2 2 | page 0 of A page 3 page 4
4 5 - 3 | pagel of A page 4 page S
5 — [4 | page4 of B page 5 page 6
6 - 2 5 | page4 of A page 6 page 7
7 ~ 1)) 6 | page5of B page 7
S page oRbTE
a) Complete the above page table for Process A, S 2 37
~~ b} If process A is currently running and.the CPU $al ica\gvirtual*addré*s”? 6f 2329, then what would be the
5o yroming e P s e m

eneri

. . 2
3 comesponding physical address? AL e
- |7 | 23%

S

Z}({C)ZL{'{EZJEZB:; 22%@

¢) What is the TLB (translation-lookaside buffer) and why is it important for efficient operation of a paged, virtual

memory system? : - \ e
P (jaycl!@_ ©€ ﬁf‘)ﬁ?ef "f“ﬁi-éze entvies (a ‘7%*’ CPe, T4 Sﬁﬁé&gf
VE?“IW»’I Yo IQ‘!\}‘"S&&I mﬁéﬁ&*« ‘}”Wiﬂ&“!ﬁ‘{’/‘om I‘*{l %/AQ [3@79 7’?‘5/@
‘é?f\“!y% can_be found ia 1B 224 auoit accesc sloe Igﬂﬁﬁéﬁ g

Question 9.4(8 points)- There are many similarities between the cache-memory (RAM) level and memory-disk level o
of the memory hicrarchy (i.e., memory acts as a cache of pages for the disk), but there are also important differences@e .
A cache miss (i.e., access to a memory block not loaded into cache) stalls the running program temporarily, but a '
page fault (i.e., access to a page not loaded into memory) causes the running program to turnover the CPU to another

program. Why are these cases treated differently by the computer system? Gﬂ ! } ﬂ / Y
& . 3] .1 A ‘ bé{' (? (\;S -ﬂf‘
(é @"l &ZCA@. W?f.§J§ Memae) g}i&@-g‘f JVS% nets o ve

4 page ﬁa«”’l page Musd Z:?@ V‘(?ﬂ(ﬂ Q’Zwﬁ*‘ éﬂ-’%ﬁ;wé{\ QQ(&"“’@‘ el [é‘
A) 0,000,000 0 ¢y SO We ves (AU over o anotbar procesy, 2

i

Fall 2013

Name:

Question 10. (9 points) High-level for-loop

fori:=0to 100 do

Assembly/Machine Language
LOAD_IMMEDIATE R3, #0

LOAD IMMEDIATE R4, #100
: FOR: BGT.R3, R4, END FOR

end for B FOR
END FOR:

If the above “for-loop” is executed on a pipelined computer with a branch-prediction buffer (BPB) with two-bits to
dynamically predict the branch outcome, indicate whether each of the following statements is True or False,

a) | The BPB correctly predicts NOT TAKEN for the conditional branch (BGT) instruction @False

for all but the first and last iteration of the loop.
True

b) | The BPB correctly predicts TAKEN for the conditional branch (BGT) instruction for all
but the last iteration of the loop. .
", | ¢} | The BPB correctly predicts NOT TAKEN for the unconditional branch (B FOR)] -
instruction for all but the last iteration of the loop. e :False:
d) | The BPB correctly predicts TAKEN for the unconditional branch (B) instruction for all
but the first iteration of the loop. False
e) | As every instruction is fetched (F stage), the BPB is checked to see if the instruction is a) False
known branch instruction and if it is what its prediction is (TAKEN or NOT TAKEN).
1) WITHOUT a branch-prediction buffer (BPB{;{on our S-stage pipeline)What would be the total branch penalty for:
#i! Conditional BGT instruction = 2 X l - Z Uncondition?l B FOR instruction = l Y4 ’ O \ — / O {
= et 4 -
Question 11, (15 points) Assume the same 5-stage pipeline discussed in class. Recall that:
* arithmetic instructions, e.g., “ADD R3, R2, R1” register R3 receives the result of adding registers R2 and R1
* load instruction, e.g., “LOAD R4, 16(R3)” loads R4 from the memory address specified by 16 + content in R3
* store instruction, e.g., “STORE R4, 8(R3)” stores R4 to the memory address specified by 8 + content of R3

a. What would the timing be without bypass-signal paths/forwarding (use “stalls” to solve the data hazard)?

Time —
Ingiructions 1 3l4]s]e|7]8]o]10]an]12]13]14]15]16[17]18]19]20]21]22
ADDRI,R2,R1 |FID|E|M|W
7 [LOADRANGRS) | [E[DI E| MW
T ISURRDYRE,) ~ Fl—|—ID|E& M |W _
LOAD R778(R2) Fl—| - -|PlEIMW
MUL R6/R7 R4 FIl—] =] D[E] M
STORE(K6) 4(R5) Fl 14—~ [PIE M|
b. What would the timing be with bypass-signal/forwarding paths? (You might not need all 22 cycles)
Time —
Instructions 1{2]3]4]5 71819 10]11]12|13]14|15]16]17]18]19[20[21{22
ADDR3,R2,RlI |F|D|[E/MJW
~ |LOAD R4, 16(RS5) FlDE W
"7 |SUBR2,R6, R3 FiIDIPE, MW
LOAD R7, 8(R2) Fiple Imiw
MUL R6, R7, R4 FID|I—YE w
STORE R6, 4(RS) Fi-IDIEMW

5/{ c. Draw arrows in the above table (part b) indicating all forwarding.

! ;r'!" ;ié

Fall 2013 Name:

Question 12. (12 points) Superscalar processors with out-of-order execution introduce new data-dependencies:
¢+ WAW.: write-after-write
* WAR: write-after-read L/ b "L Ré
“’g a) Using the below code indicate an example of WAW (“Instructions # and # have a WAW on R#”)

L{ b) Using the below code indicate an example of WAR (“Instructions # and # have a WAR on R#”)

wé- !
Instruction 1: DIV R8, R2, R1 4&,!;'1 3 S R2

Instruction 2: MUL R6, R4, RS
Instruction 3: ADD R2, R6, R7
Instruction 4: SUB R6, R2, R4

¢) Rewrite the above code using register renaming to remove the WAW and WAR dependencies. You can just use
letters (A, B, C, etc.) for new registers that you introduce when removing these dependencies.

Instruction 1: DIV R8, R2, R1

Instruction 2: MUL Rf , R , R%
Instruction 3: ADD (3()\ Rfé')
Instruction 4: SUB ig'/)(/9 kY

YOU HAVE A CHOICE FOR THE LAST QUESTION 13! DON’T DO BOTH ONLY ONE.

g
e

Question 13. (7 points) Explain how register renaming {(e.g., question 12 above) enables a superscalar proceséor to
achieve a higher level of instruction-level parallelism (ILP} within a program.

RC&} . Yeaamen ?) bn?ff[f J‘H 7’!‘10 &Q?/ﬂc‘ff} eACL So '/”4 esfe
. . g
(n f'fwﬂl“l‘fm § CAdn !:7-(7_ (?/(Mc;’/ﬁﬁ o] O (& ”Q;;,

Question 13. (7 points) The Intel x86 family of processors (including the Pentivm 1V discussed in class) starting in
the early 70’s. Since the idea of RISC had not been thought of yet, the x86 instruction set is a CISC (complex
instruction set computer) design. Explain how the more modern Intel processors (like the Pentium IV, and later) in
this family are able to execute x86 CISC programs and still take advantage of RISC ideas like pipelining and
superscalar, '

The (TSC x66 ‘asticllins dre Cﬁyﬂfg y ‘e:fa;,/;ig,,
T rangly 7’“(?06 al execdion Ao o RISC + ype
iﬂffj‘d“’()lf) Cratibny 7[’}!;&'{ (A Z)c? /Of.ﬂfg //:40'/ a

7 € §C4 /c?if"{?‘ﬂ . T}” e esy I{S oQ’ ;l L\(? 0 6/710“‘(7 CJ/Z«Q;)/‘“-
RISC pecion is yelice jn cI5C G0 or i

