--- General Information for device 0 ---
Name: Tesla P100-PCIE-16GB
Compute capability: 6.0
Clock rate: 1328500
Device copy overlap: Enabled
Kernel execution timeout: Disabled
--- Memory Information for device 0 ---
Total global mem: 17071734784
Total constant Mem: 65536
Max mem pitch: 2147483647
Texture Alignment: 512
--- MP Information for device 0 ---
Multiprocessor count: 56
Shared mem per mp: 49152
Registers per mp: 65536
Threads in warp: 32
Max threads per block: 1024
Max thread dimensions: (1024, 1024, 64)
Max grid dimensions: (2147483647, 65535, 65535)
Comp. Arch. Week 13 Monday Video

In addition to your CUDA by Example textbook, you might also benefit from online resources:

Referenced NVIDIA slides on pages 1 - 24 from Getting Started with CUDA:
http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf
Referenced slides on pages 1, 28, 166-168, 189-191, 212-249 from (Dan Negrut at UW-Madison):
http://sbel.wisc.edu/Courses/ME964/2012/Lectures/cudaNegrutWisconsin.pdf

On fermi.cs.uni.edu, output of deviceQuery command:

```
flenua@fermi1:~$ deviceQuery
CUDA Device Query...
There are 3 CUDA devices.

CUDA Device #0
Major revision number: 2
Minor revision number: 0
Name: Tesla C2070
Total global memory: 1341587456
Total shared memory per block: 49152
Total registers per block: 32768
Warp size: 32
Maximum memory pitch: 2147483647
Maximum threads per block: 1024
Maximum dimension 0 of block: 1024
Maximum dimension 1 of block: 1024
Maximum dimension 2 of block: 64
Maximum dimension 0 of grid: 65535
Maximum dimension 1 of grid: 65535
Maximum dimension 2 of grid: 65535
Clock rate: 1147000
Total constant memory: 65536
Texture alignment: 512
Concurrent copy and execution: Yes
Number of multiprocessors: 14
Kernel execution timeout: No

CUDA Device #1
Major revision number: 2
Minor revision number: 0
Name: Tesla C2070
...

CUDA Device #2
Major revision number: 2
Minor revision number: 0
Name: Tesla C2070
...
```

A CUDA program can dynamically select the GPU device using the command "cudaSetDevice(device_num)".

Your account also gets you on fermi2.cs.uni.edu which has additional CUDA devices.

<table>
<thead>
<tr>
<th>Directions</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run deviceQuery command to see CUDA devices on host</td>
<td>deviceQuery</td>
</tr>
<tr>
<td>Compile the CUDA code using nvcc (.cu is the CUDA file extension)</td>
<td>nvcc -o count3s count3s.cu</td>
</tr>
<tr>
<td>Run code on fermi1.cs.uni.edu</td>
<td>./count3s</td>
</tr>
</tbody>
</table>
General CUDA architecture and memory layout:

![CUDA Architecture Diagram]

General CUDA programming steps:

1. `main`: (running on host)
 1. Reads data from file into host memory (e.g., main memory of fermi1.cs.uni.edu)
 2. Allocate global memory on device via `cudaMalloc` for data
 3. Copy data from host memory to global memory via `cudaMemcpy`
 4. Kernel launches a grid of thread blocks where:
 a. All threads can access data in global memory
 b. Threads within a block cooperate via shared memory, e.g., "__shared__" qualifier
 c. Threads within a block can synchronize, e.g., "__syncthreads();" -- barrier
 d. Threads in different blocks cannot cooperate much, e.g., atomic functions "atomicAdd()", __threadfence()
 5. Copy results from global memory to host memory via `cudaMemcpy`

General Kernel thread steps:

1. Thread determines its location within the grid and its block
 a. `gridDim` variable of type `dim3` which contains the dimensions of the grid of blocks
 b. `blockIdx` variable of type `uint3` which contains its block index(es) within the grid
 c. ` blockDim` variable of type `dim3` which contains the dimensions of each block
 d. `threadIdx` variable of type `uint3` which contains its thread index(es) within its block
2. Calculate its index of its first data value and stride to its next
3. Loops over and processes the data determined in step (2)
4. Writes result(s) to global memory
/* Programmer: Mark Flenup
File: count3s.cu
Compile As: nvcc -0 count3s count3s.cu
Run As: .count3s

Description: A CUDA solution to count the number of 3s in a 1-d array. (Need to run on Cuda 1.3 Capable devices) */

#define SIZE (512*1024)
#define threadPerBlock 512

#include <stdlib.h>
#include <stdio.h>
#include <cuda.h>

static void HandleError(cudaError_t err, const char *file, int line)
{
 if (err != cudaSuccess)

 printf("%s in %s at line %d is %s", __FILE__, __FILE__, __LINE__);
 exit(EXIT_FAILURE);
 }

#define HANDLE_ERROR(err) (HandleError(err, __FILE__, __LINE__))

// Takes 20.3 ms on Tesla C2070 (fermi device #0), 29.6 ms serially on host, and 281.1 ms on older Tesla C1060
__global__ void count3_kernelA(int * dev_array, int length, int * devCount)
{
 int t = threadIdx.x + blockDim.x * blockIdx.x;
 int stride = blockDim.x * gridDim.x;
 while (t < length){
 if (dev_array[t] == 3) {
 atomicInc(devCount, 1);
 }
 }
}

__global__ void count3s_kernelA(int * dev_array, int length, int * devCount)
{
 int i = blockIdx.x + blockDim.x * blockIdx.x;
 int offset = blockDim.x * gridDim.x;
 while (i < length){
 if (dev_array[i] == 3) {
 atomicAdd(devCount, 1);
 }
 }
}

__global__ void counts3s_kernel1C(int * dev_array, int length, int * devCount)
{
 int i = blockIdx.x + blockDim.x * blockIdx.x;
 int offset = blockDim.x * gridDim.x;
 int threadCount = 0;
 while (i < length) {
 if (dev_array[i] == 3) {
 threadCount++;
 }
 }
 threadCounts[threadIdx.x] = threadCount;
 _syncthreads();

 // binary-tree reduction, threadsPerBlock must be a power of 2
 if (threadsPerBlock >= 0){
 if (threadIdx.x < threadsPerBlock){
 threadCounts[threadIdx.x] += threadCounts[threadIdx.x + 1];
 }
 }
 _syncthreads();
}

if (threadIdx.x == 0) {
 atomicAdd(devCount, threadCounts[0]);
}

// end count3s_kernelC
int main(int argc, char* argv[]) {
 int sequentialCount, i, length;
 int * myArray;

 // fermi device #0 is Tesla C2070 has 2.0 Compute Capability on fermi
 HANDLE_ERROR(cudaGetDeviceProperties(&prop, 0));
 HANDLE_ERROR(cudaSetDevice(0));

 cudaEvent_t start, stop;
 cudaEventCreate(&start);
 cudaEventCreate(&stop);

 // Generate data array with 10% 3s
 length = SIZE;
 printf("length = %d\n", length);
 myArray = (int *) malloc(length*sizeof(int));
 srand(5);
 for (i=0; i < length; i++) {
 myArray[i] = rand() % 10;
 } // end for i

 /* Do the actual work sequentially */
 cudaEventRecord(start, 0);
 sequentialCount = 0;
 for (i=0; i < length; i++) {
 if (myArray[i] == 3) {
 sequentialCount++;
 } // end if
 } // end for i
 cudaEventRecord(stop, 0);
 cudaEventSynchronize(stop);
 float elapsedTime;
 cudaEventElapsedTime(&elapsedTime, start, stop);
 printf("Time to count 3s on host: %.3f ms\n", elapsedTime);
 printf("Number of 3's: %d\n", sequentialCount);

 // Do the work on GPU
 // allocate memory on the GPU for the data
 cudaEventRecord(start, 0);
 int * dev_array;
 int * dev_count;
 cudaMalloc((void**) &dev_array, length*sizeof(int));
 cudaMemcpy(dev_array, myArray, length, cudaMemcpyHostToDevice);
 cudaMalloc((void**) &dev_count, sizeof(int));
 cudaMemcpy(dev_count, 0, sizeof(int));

 // Determine device properties
 int blocks = prop.multiProcessorCount;
 count3s_kernel<<<blocks, threadsPerBlock>>>(dev_array, length, dev_count);

 int devCount;
 cudaMemcpy(&devCount, dev_count, sizeof(int), cudaMemcpyDeviceToHost);

 cudaEventRecord(stop, 0);
 cudaEventSynchronize(stop);
 cudaEventElapsedTime(&elapsedTime, start, stop);
 printf("Time to count 3s on GPU device: %.3f ms\n", elapsedTime);
 if (sequentialCount == devCount) {
 printf("Results match at %d 3s\n", devCount);
 } else {
 printf("Results wrong with seq. count %d and GPU count %d.\n", sequentialCount, devCount);
 } // end if

 cudaEventDestroy(start);
 cudaEventDestroy(stop);
 cudaFree(dev_count);
 cudaFree(dev_array);

 free(myArray);

 return 0;
} /* end main */
Comp. Arch. Lab 13 Due: Saturday, Nov 7 at 11 PM

Learning Objectives:
- Write CUDA commands to allocate and copy between host memory and device memory
- Apply CUDA commands to launch a kernel with a specified grid of thread blocks
- Time CUDA events to evaluate performance.

To start the lab:
- watch the Lab 13 Video on the eLearning system
- download lab13.zip from the eLearning system to your computer
- upload lab13.zip to student.cs.uni.edu using a secure ftp client (winSCP, FileZilla, scp, etc.)
- log in to XSEDE Single Sign On Hub using Putty at: login.xsede.org using your XUP username and password OR from student.cs.uni.edu using ssh: ssh -l XUPusername login.xsede.org
- Select 1 (one) for Duo Push
- At XUPusername@ssohub ~]$ prompt connect to the Bridges supercomputer by: gssssh bridges
- Load the Cuda module: module load cuda
- On Bridges XSEDE: “secure” copy lab13.zip from student.cs.uni.edu to your XSEDE account using scp: (NOTE the ‘.’ at the end of the command is needed and denotes the current directory. You’ll need to supply your student.cs.uni.edu CatID password to complete the copy): scp YOUR_USERNAME@student.cs.uni.edu:lab13.zip
- Unzip lab13.zip on XSEDE by: unzip lab13.zip

NOTE: To use CUDA on XSEDE you must first load the CUDA module into your environment by the command: module load cuda
To see a list of the installed modules use: module list
To see a list of the modules available use: module avail

Part A: Using an editor open the file lab13/enum_gpu.cu which contains a CUDA program that queries to see the number of CUDA GPU cards installed on the host computer and their characteristics. Compile it by:

nvcc -o enum_gpu enum_gpu.cu

Run it using qsub similar to MPI by:

qsub qsub.enum_gpu

Answer the following questions about the Tesla P100 GPU cards:
a) What is the Compute capability (p. 165)?
b) Is the Device copy overlap enabled?
c) How much Total global memory exists?
d) What is the Multiprocessor count?
e) How much Shared mem per mp?
f) How many Threads per warp?
g) What is the Max. threads per block?
h) What is the Max. thread dimensions (i.e., “block” dimensions)? _______ x _______ x _______
i) What are the Max. grid dimensions? _______ x _______ x _______
Part B: Using an editor open the file `lab13/addVectors.cu` which contains a CUDA program that allows the user to enter an integer command-line argument in the `qsub.addVectors ./addVectors` line: the length of the vectors. It creates three 1-dimensional arrays of that length (a, b, and c), fills arrays a and b with random floating-point numbers, and uses the GPU to sum the arrays. The vector sum is also calculated sequentially for comparison.

Compile the program using:
```
nvcc -o addVectors addVectors.cu
```
and run the program with a lengths of 100000, 1000000, and 10000000 (i.e., uncommenting the appropriate `qsub.addVectors ./addVectors` line) by: `sbatch qsub.addVectors`

Complete the timing table:

<table>
<thead>
<tr>
<th>Vector Length</th>
<th>Sequential Vector Addition (in ms)</th>
<th>CUDA Vector Addition (in ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Why is sequential vector addition faster for a length of 100,000?

b) As the length gets bigger, why is the CUDA version faster?

Recall the general CUDA programming steps:

```
main: (running on host)
1) Reads data from file (or generate it randomly) into host memory
2) Allocate global memory on device via cudaMalloc for data
3) Copy data from host memory to global memory via cudaMemcpy
4) Kernel launches a grid of thread blocks where:
   a) Threads within a block cooperate via shared memory, e.g., "__shared__" qualifier
   b) Threads within a block can synchronize, e.g., "__syncthreads();" -- barrier
   c) Threads in different blocks cannot cooperate much, e.g., atomic functions "atomicAdd()", __threadfence() 
5) Copy results from global memory to host memory via cudaMemcpy
```

c) In the partial main function of `addVectors.cu` identify the above steps:
```
// Copy a and b to device memory
size = length * sizeof(float);
cudaMalloc((void**) &d_a, size);
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMalloc((void**) &d_b, size);
```
Lab 13

Recall the general Kernel thread steps:

1) Thread determines its location within the grid and its block
 a) gridDim variable of type dim3 which contains the dimensions of the grid of blocks
 b) blockIdx variable of type uint3 which contains its block index(es) within the grid
 c) blockDim variable of type dim3 which contains the dimensions of each block
 d) threadIdx variable of type uint3 which contains its thread index(es) within its block

2) Calculate its index of its first data value and stride to its next

3) Loops over and processes the data determined in step (2)

4) Writes result(s) to global memory

d) In the Kernel function of vectorAdditionKernel identify the above steps:

 __global__ void vectorAdditionKernel(int length, float * a, float * b, float * c) {
 int tid = threadIdx.x + blockIdx.x * blockDim.x;
 int stride = blockDim.x * blockDim.x;

 while (tid < length) {
 c[tid] = a[tid] + b[tid];
 tid += stride;
 } // end while
 // end vectorAdditionKernel

 e) Explain the tid and stride calculations.

Part C: Using an editor open the file lab13/mmultA.cu which contains a CUDA program that allows the user to enter an integer command-line argument: the matrix size. It creates three “2-D matrices” (A, B, and C) embedded as 1-D row-order arrays, fills matrices A and B with random floating-point numbers, and uses the GPU to perform matrix multiplication, i.e., C = A x B. The product is also calculated sequentially for comparison.

a) Why are the 2-D matrices embedded as 1-D arrays?

Before launching the kernel the dimensions of the grid and blocks are set-up using variables of type dim3 as:

 // Set-up dimensions of blocks and grid
 dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
 dim3 dimGrid((C.wid+BLOCK_SIZE-1)/BLOCK_SIZE, (C.height + BLOCK_SIZE - 1)/BLOCK_SIZE);

 // Invoke kernel
 matrixMultKernel<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

b) Since BLOCK_SIZE is defined to be 16, what are the dimensions of a block of threads?
c) The `dimGrid` dimensions are calculated to tile blocks over the whole C array. Since C's dimensions might not be a multiple of the `BLOCK_SIZE`, explain each of the `dimGrid` dimension calculations:

\[(C_.width + BLOCK_SIZE - 1)/BLOCK_SIZE\]

\[(C_.height + BLOCK_SIZE - 1)/BLOCK_SIZE\]

d) In the `matrixMultKernel` function explain the row and col calculations:

```c
int row = threadIdx.y + blockIdx.y * blockDim.y;

int col = threadIdx.x + blockIdx.x * blockDim.x;
```

e) In the `matrixMultKernel` function what is the purpose of the if-statement:

```c
if (row < C_.height && col < C_.width) {
```

f) Why is it faster to use a local variable `C_value` instead updating `C.elements[row * C.width + col]` directly inside the for-loop?

Part D: Compile two matrix multiplication programs using:

```bash
nvcc -o mmultA mmultA.cu
nvcc -o mmultB mmultB.cu
```

Using an editor open the file `lab13/multB.cu` which contains another CUDA program to perform matrix multiplication, i.e., \(C = A \times B\). Start by timing `mmultA` and `mmultB` on 1024x1024 size matrices using:

```bash
sbatch qsub.mmultA and sbatch qsub.mmultB
```

a) What are the times?

seq. matrix multiplication on host: ________, `mmultA` time ________, and `mmultB` time ________

To understand `mmultB.cu` consider a sub-matrix of C, Csub. It needed corresponding rows from A and columns from B. It further splits these rows and columns into sub-matrices to improve memory efficiency.

![Matrix Diagram](image)

b) What is the purpose of the for-loop: for (int m=0; m < (A.width/BLOCK_SIZE); m++) {

```
c) Why is the purpose of the first `sync_threads()` call?

d) Why is the purpose of the second `sync_threads()` call?

Submit lab13.zip containing question answers on the eLearning system.
#include <stdlib.h>
#include <stdio.h>
#include <cuda.h>

#define BLOCK_SIZE 16
#define TRUE 1
#define FALSE 0
#define BOOL int

static void HandleError( cudaError_t err,
                        const char *file,
                        int line ) {
    if (err != cudaSuccess) {
        printf( "%s in %s at line %d\n",
                cudaGetErrorString( err ),
                file, line );
        exit( EXIT_FAILURE );
    }
}

// function prototypes
float* initializeVector(int length, float min, float max);
void printVector(int length, float *);
BOOL equalVectors(int length, float *vector1, float *vector2, float tolerance);
void seqVectorAddition(int length, float *a, float *b, float *c);

__global__ void vectorAdditionKernel(int length, float *a, float *b, float *c);

int main(int argc, char* argv[]) {
    float *a;
    float *b;
    float *c;
    float *seqC;
    int length; // assume square
    size_t size;

    cudaDeviceProp prop;
    // fermi device #0 is Tesla C2070 has 2.0 Compute Capability
    HANDLE_ERROR(cudagetDeviceProperties( &prop, 0));
    HANDLE_ERROR(cudasetDevice(0));

    cudaEvent_t start, stop;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);

    if (argc != 2) {
        printf("Usage: %s <length>\n", argv[0]);
        exit(-1);
    } // end if

    sscanf(argv[1], "%d", &length);
printf("vector length = %d\n", length);

a = initializeVector(length, +1.0, -1.0);
b = initializeVector(length, +1.0, -1.0);
c = initializeVector(length, +1.0, -1.0);
seqC = initializeVector(length, +1.0, -1.0);

/* Do the actual work sequentially */
cudaEventRecord(start, 0);
seqVectorAddition(length, a, b, seqC);

cudaEventRecord(stop, 0);
cudaEventSynchronize( stop);
float elapsedTime;
cudaEventElapsedTime( &elapsedTime, start, stop);
printf("Time perform seq. vector addition on host: %.3f ms\n", elapsedTime);

// Do the work on GPU
cudaEventRecord(start, 0);
float * d_a;
float * d_b;
float * d_c;

// Copy a and b to device memory
size = length * sizeof(float);
cudaMalloc((void**) &d_a, size);
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMalloc((void**) &d_b, size);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Allocate storage for c in device memory
cudaMalloc((void**) &d_c, size);

// Invoke kernel with 128 blocks, each with 128 threads
vectorAdditionKernel<<<128, 128>>>(length, d_a, d_b, d_c);

// Copy GPU calculated c back to host memory
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

cudaEventRecord(stop, 0);
cudaEventSynchronize( stop);

cudaEventElapsedTime( &elapsedTime, start, stop);
printf("Time perform vector addition on CUDA device: %.3f ms\n", elapsedTime);

if (equalVectors(length, c, seqC, 0.001)) {
    printf("Results match within a tolerance of %f\n", 0.001);
} else {
    printf("Results wrong: tolerance used %f\n", 0.001);
} // end if

// print if small enough
if (length < 10) {
    printf("nc from CUDA:\n");
    printVector(length, c);
    printf("nseqC from host:\n");
}
printVector(length, seqC);
} // end if

cudaEventDestroy(start);
cudaEventDestroy(stop);
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

free(a);
free(b);
free(c);
free(seqC);

return 0;
} /* end main */

// Each thread might compute many elements with each stride apart
__global__ void vectorAdditionKernel(int length, float * a, float * b, float * c) {
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    int stride = blockDim.x * blockDim.x;

    while (tid < length) {
        c[tid] = a[tid] + b[tid];
        tid += stride;
    } // end while
} // end vectorAdditionKernel

******************************************************************************
Allocate vector of floats and initialized elements randomly.
******************************************************************************
float* initializeVector(int length, float min, float max) {
    int i;
    float range, div;
    float * temp;

    temp = (float*) malloc(sizeof(float) * length);

    for (i=0; i < length; i++) {
        range = max - min;
        div = RAND_MAX / range;
        temp[i] = min + (rand() / div);
    } // end for

    return temp;
} // end initializeVector

******************************************************************************
Prints vector to screen
******************************************************************************
void printVector(int length, float * v) {
    int i;

    for (i=0; i < length; i++) {

printf("%8.4f ", v[i]);

} // end for
printf("\n");
} // end printVector

/*********************************************************************************/
**
Compares elements of vector1 and vector2 to see whether all match within
the given tolerance. Returns TRUE or FALSE accordingly.
*********************************************************************************/

BOOL equalVectors(int length, float * vector1, float * vector2, float tolerance) {
    int i;

    for (i=0; i < length; i++) {
        if (fabsf(vector1[i] - vector2[i]) > tolerance) {
            printf("MISMATCH VALUES: %f %f\n", vector1[i], vector2[i]);
            return FALSE;
        } // end if
    } // end for
    return TRUE;
} // end equalVectors

/*********************************************************************************/
**
Sequentially computes vector addition of c = a + b with
c being returned.
*********************************************************************************/

void seqVectorAddition(int length, float * a, float * b, float * c) {
    int i;

    for (i=0; i < length; i++) {
        c[i] = a[i] + b[i];
    } /* end for (i */
} // end seqVectorAddition
/* Programmer: Mark Fienup
File: mmultA.cu
Load Module: module load cuda
Compile As: nvcc -o mmultA mmultA.cu
Run As: sbatch qsub.mmultA
Description: A CUDA solution to the matrix multiplication
Stores matrices in 1-D arrays in row-order.
*/

#include <stdlib.h>
#include <stdio.h>
#include <cuda.h>

#define BLOCK_SIZE 16
#define TRUE 1
#define FALSE 0
#define BOOL int

static void HandleError( cudaError_t err,
                        const char *file,
                        int line ) {
    if (err != cudaSuccess) {
        printf( "%s in %s at line %d\n", cudaGetErrorString( err ),
                file, line );
        exit( EXIT_FAILURE );
    }
}
#define HANDLE_ERROR( err ) (HandleError( err, __FILE__, __LINE__ ))

typedef struct {
    int width;
    int height;
    float *elements;
} Matrix;

// function prototypes
Matrix initializeMatrix(int rows, int columns, float min, float max);
void printMatrix(Matrix M);
BOOL equalMatrices(const Matrix M1, const Matrix M2, float tolerance);
void seqMatrixMult(const Matrix A, const Matrix B, Matrix C);

__global__ void matrixMultKernel(const Matrix A, const Matrix B, Matrix C);

int main(int argc, char* argv[]) {
    Matrix A, B, C, seqC;
    int n; // assume square
    size_t size;

    cudaDeviceProp prop;
    // fermi device #0 is Tesla C2070 has 2.0 Compute Capability
    HANDLE_ERROR(cudaGetDeviceProperties( &prop, 0 ));
    HANDLE_ERROR(cudaSetDevice(0 ));

    cudaEvent_t start, stop;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);

    if (argc != 2) {

printf("Usage: %s <matrix size>\n", argv[0]);
exit(-1);
} // end if

sscanf(argv[1], "%d", &n);
printf("n = %dn", n);

A = initializeMatrix(n, n, +1.0, -1.0);
B = initializeMatrix(n, n, +1.0, -1.0);
C = initializeMatrix(n, n, +1.0, -1.0);
seqC = initializeMatrix(n, n, +1.0, -1.0);

/* Do the actual work sequentially */
cudaEventRecord(start, 0);

seqMatrixMult(A, B, seqC);

cudaEventRecord(start, 0);
cudaEventSynchronize(stop);
float elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time perform seq. Matrix Multiplication on host: %3.1f ms\n", elapsedTime);

// Do the work on GPU

cudaEventRecord(start, 0);
Matrix d_A, d_B, d_C;

// Copy A and B to device memory
d_A = A;
size = A.width * A.height * sizeof(float);
cudaMalloc((void**)&d_A.elements, size);
cudamemcpy(d_A.elements, A.elements, size, cudaMemcpyHostToDevice);

d_B = B;
size = B.width * B.height * sizeof(float);
cudaMalloc((void**)&d_B.elements, size);
cudamemcpy(d_B.elements, B.elements, size, cudaMemcpyHostToDevice);

// Allocate storage for C in device memory

d_C = C;
size = C.width * C.height * sizeof(float);
cudaMalloc((void**)&d_C.elements, size);

// Set-up dimensions of blocks and grid

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(((C.width + BLOCK_SIZE - 1) / BLOCK_SIZE, (C.height + BLOCK_SIZE - 1) / BLOCK_SIZE));

// Invoke kernel
matrixMultKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

// Copy GPU calculated C back to host memory

cudamemcpy(C.elements, d_C.elements, size, cudaMemcpyDeviceToHost);


cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);

cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time perform Matrix Multiplication on CUDA device: %3.1f ms\n", elapsedTime);

if (equalMatrices(C, seqC, 0.001)) {
    printf("Results match within a tolerance of %f\n", 0.001);
} else {
    printf("Results wrong: tolerance used %f\n", 0.001);
} // end if

// print if small enough
if (C.width < 10 && C.height < 10) {
    printf("\nC from CUDA:\n");
    printMatrix(C);
    printf("\nseqC from host:\n");
    printMatrix(seqC);
} // end if

cudaEventDestroy( start );
cudaEventDestroy( stop );
cudaFree( d_A.elements );
cudaFree( d_B.elements );
cudaFree( d_C.elements );

free(A.elements);
free(B.elements);
free(C.elements);
free(seqC.elements);

return 0;
} /* end main */

// Each thread computes one element of C by accumulating results in local CValue
__global__ void matrixMultKernel(const Matrix A, const Matrix B, Matrix C) {
    int row = threadIdx.y + blockIdx.y * blockDim.y;
    int col = threadIdx.x + blockIdx.x * blockDim.x;
    int k;
    float CValue;

    if (row < C.height && col < C.width) {
        CValue = 0.0;
        for (k = 0; k < A.width; k++) {
            CValue += A.elements[row * A.width + k] * B.elements[k * B.width + col];
        } // end for
        C.elements[row * C.width + col] = CValue;
    } // end if
} // end matrixMultKernel

******************************************************************************
Allocate matrix of floats at 1D array and initialized elements random.
******************************************************************************
Matrix initializeMatrix(int rows, int columns, float min, float max) {
    int i;
    float range, div;
    Matrix M;

    M.width = columns;
    M.height = rows;
M.elements = (float *) malloc(sizeof(float) * rows * columns);

for (i=0; i < rows*columns; i++) {
    range = max - min;
    div = RAND_MAX / range;
    M.elements[i] = min + (rand() / div);
} // end for

return M;
} // end initializeMatrix

/** Prints matrix to screen 
 **/ 
void printMatrix(Matrix M) {
    int r, c;

    for (r=0; r < M.height; r++) {
        for (c=0; c < M.width; c++) {
            printf("%8.4f ", M.elements[r * M.width + c]);
        } // end for (c:
        printf("\n");
    } // end for (r:
} // end printMatrix

/**
 **/ 
BOOL equalMatrices(const Matrix M1, const Matrix M2, float tolerance) {
    int i;

    if (M1.width != M2.width || M1.height != M2.height) {
        return FALSE;
    } // end if

    for (i=0; i < M1.width*M1.height; i++) {
        if (fabsf(M1.elements[i] - M2.elements[i]) > tolerance) {
            printf("MISMATCH VALUES: %f %f\n", M1.elements[i], M2.elements[i]);
            return FALSE;
        } // end if
    } // end for
    return TRUE;
} // end equalMatrices

/**
 **/ 
void seqMatrixMult(const Matrix A, const Matrix B, Matrix C) {
    int i, j, k;
    float CValue;

for (i=0; i < C.height; i++) {
    for (j=0; j < C.width; j++) {
        CValue = 0.0;
        for (k=0; k < A.width; k++) {
            CValue += A.elements[i*A.width + k] * B.elements[k*B.width + j];
        } /* end for (k */
        C.elements[i*C.width + j] = CValue;
    } /* end for (j */
} /* end for (i */
} // end seqMatrixMult
#include <stdlib.h>  
#include <stdio.h>  
#include <cuda.h>  

#define BLOCK_SIZE 16  
#define TRUE 1  
#define FALSE 0  
#define BOOL int

static void HandleError( cudaError_t err,  
   const char *file,  
   int line ) {  
   if (err != cudaSuccess) {  
      printf( "%s in %s at line %d\n", cudaGetErrorString( err ),  
         file, line );  
      exit( EXIT_FAILURE );  
   }  
}

#define HANDLE_ERROR( err ) (HandleError( err, __FILE__, __LINE__ ))

typedef struct {  
   int width;  
   int height;  
   int stride;  
   float * elements;  
} Matrix;

// Get a matrix element  
_device_ float GetElement(const Matrix A, int row, int col) {  
   return A.elements[row * A.stride + col];  
} // end GetElement

// Set a matrix element  
_device_ void SetElement(Matrix A, int row, int col, float value) {  
   A.elements[row * A.stride + col] = value;  
} // end SetElement

// Get the BLOCK_SIZE x BLOCK_SIZE sub-matrix Asub of A that is  
// located col sub-matrices to the right and row sub-matrices down  
// from the upper-left corner of A  
_device_ Matrix GetSubMatrix(Matrix A, int row, int col) {  

   Matrix Asub;

   Asub.width = BLOCK_SIZE;  
   Asub.height = BLOCK_SIZE;  
   Asub.stride = A.stride;  
   Asub.elements = &A.elements[A.stride*BLOCK_SIZE*row + BLOCK_SIZE*col];
return Asub;
} // end GetSubMatrix

// function prototypes
Matrix initializeMatrix(int rows, int columns, float min, float max);
void printMatrix(Matrix M);
BOOL equalMatrices(const Matrix M1, const Matrix M2, float tolerance);
void seqMatrixMult(const Matrix A, const Matrix B, Matrix C);

__global__ void matrixMultKernel(const Matrix A, const Matrix B, Matrix C);

int main(int argc, char* argv[])
{
    Matrix A, B, C, seqC;
    int n; // assume square
    size_t size;

cudaDeviceProp prop;
    // fermi device #0 is Tesla C2070 has 2.0 Compute Capability
    HANDLE_ERROR(cudaGetDeviceProperties( &prop, 0));
    HANDLE_ERROR(cudaSetDevice(0));

    cudaEvent_t start, stop;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);

    if (argc != 2) {
        printf("Usage: %s <matrix size>\n", argv[0]);
        exit(-1);
    } // end if

    sscanf(argv[1], "%d", &n);
    printf("n = %d\n", n);

    A = initializeMatrix(n, n, +1.0, -1.0);
    B = initializeMatrix(n, n, +1.0, -1.0);
    C = initializeMatrix(n, n, +1.0, -1.0);
    seqC = initializeMatrix(n, n, +1.0, -1.0);

    /* Do the actual work sequentially */
    cudaEventRecord(start, 0);

    seqMatrixMult(A, B, seqC);

    cudaEventRecord(stop, 0);
    cudaEventSynchronize( stop);
    float elapsedTime;
    cudaEventElapsedTime( &elapsedTime, start, stop);
    printf("Time perform seq. Matrix Multiplication on host: %3.1f ms\n", elapsedTime);

    // Do the work on GPU
    cudaEventRecord(start, 0);
    Matrix d_A, d_B, d_C;

    // Copy A and B to device memory
    d_A = A;
    d_A.stride = A.width;
    size = A.width * A.height * sizeof(float);
cudamalloc(void])** &d_A.elements, size);
cudamemcpy(d_A.elements, A.elements, size, cudamemcpyHostToDevice);

d_B = B;
d_B.stride = B.width;
size = B.width * B.height * sizeof(float);
cudamalloc(void)** &d_B.elements, size);
cudamemcpy(d_B.elements, B.elements, size, cudamemcpyHostToDevice);

// Allocate storage for C in device memory
d_C = C;
d_C.stride = C.width;
size = C.width * C.height * sizeof(float);
cudamalloc(void)** &d_C.elements, size);

// Set-up dimensions of blocks and grid
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid((B.width + BLOCK_SIZE - 1) / BLOCK_SIZE, (A.height + BLOCK_SIZE - 1) / BLOCK_SIZE);

// Invoke kernel
matrixMultKernel(dimBlock, dimGrid)(d_A, d_B, d_C);

// Copy GPU calculated C back to host memory
 cudamemcpy(C.elements, d_C.elements, size, cudamemcpyDeviceToHost);

cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);

cudaEventElapsedTime(&elapsedTime, start, stop);
printf( "Time perform Matrix Multiplication on CUDA device: %3.1f ms\n", elapsedTime);

if (equalMatrices(C, seqC, 0.001)) {
    printf("Results match within a tolerance of %f\n", 0.001);
} else {
    printf("Results wrong: tolerance used %f\n", 0.001);
} // end if

// print if small enough
if (C.width < 10 && C.height < 10) {
    printf("\nC from CUDA:\n");
    printMatrix(C);
    printf("\nseqC from host:\n");
    printMatrix(seqC);
} // end if

cudaEventDestroy(start);
cudaEventDestroy(stop);
cudafree(d_A.elements);
cudafree(d_B.elements);
cudafree(d_C.elements);

free(A.elements);
free(B.elements);
free(C.elements);
free(seqC.elements);

return 0;
void matrixMultKernel(const Matrix A, const Matrix B, Matrix C) {
    // block row and column
    int blockRow = blockIdx.y;
    int blockCol = blockIdx.x;

    // Each thread block computes one sub-matrix Csub of C
    Matrix Csub = GetSubMatrix(C, blockRow, blockCol);

    // Each thread computes one element of Csub by
    // accumulating results into CValue
    float CValue = 0.0;

    // Thread row and column within Csub
    int row = threadIdx.y;
    int col = threadIdx.x;

    // Loop over all the sub-matrices of A and B that are required
    // to compute Csub
    // Multiply each pair of sub-matrices together and accumulate
    // the results
    for (int m = 0; m < (A.width/BLOCK_SIZE); m++) {
        // Get sub-matrix of A
        Matrix Asub = GetSubMatrix(A, blockRow, m);

        // Get sub-matrix of B
        Matrix Bsub = GetSubMatrix(B, m, blockCol);

        // Shared memory used to store Asub and Bsub
        __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
        __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

        // Load Asub and Bsub from device memory to shared memory
        // Each thread loads one element of each sub-matrix
        As[row][col] = GetElement(Asub, row, col);
        Bs[row][col] = GetElement(Bsub, row, col);

        // Synchronize to make sure the sub-matrices are loaded
        // before starting to computation of Csub
        __syncthreads();

        // Multiply Asub and Bsub together
        for (int k = 0; k < BLOCK_SIZE; k++) {
            CValue += As[row][k] * Bs[k][col];
        }
    }

    // Synchronize to make sure that the preceeding
    // computation is done before loading two new
    // sub-matrices of A and B in the next iteration
    __syncthreads();
}

// Write Csub to device memory
// Each thread writes one element
SetElement(Csub, row, col, CValue);
}
} // end matrixMultKernel

/*******************************************************************************
Allocate matrix of floats at 1D array and initialized elements randomly.
*******************************************************************************
Matrix initializeMatrix(int rows, int columns, float min, float max) {
    int i;
    float range, div;
    Matrix M;

    M.width = columns;
    M.height = rows;
    M.elements = (float*) malloc(sizeof(float) * rows * columns);

    for (i=0; i < rows*columns; i++) {
        range = max - min;
        div = RAND_MAX / range;
        M.elements[i] = min + (rand() / div);
    } // end for

    return M;
} // end initializeMatrix

/*******************************************************************************
Prints matrix to screen
*******************************************************************************
void printMatrix(Matrix M) {
    int r, c;

    for (r=0; r < M.height; r++) {
        for (c=0; c < M.width; c++) {
            printf("%.4f ", M.elements[r * M.width + c]);
        } // end for (c)
        printf("\n");
    } // end for (r)
} // end printMatrix

/*******************************************************************************
Compares elements of M1 and M2 to see whether all match within the given tolerance. Returns TRUE or FALSE accordingly.
*******************************************************************************
BOOL equalMatrices(const Matrix M1, const Matrix M2, float tolerance) {
    int i;

    if (M1.width != M2.width || M1.height != M2.height) {
        return FALSE;
    } // end if

    for (i=0; i < M1.width*M1.height; i++) {
        if (fabsf(M1.elements[i] - M2.elements[i]) > tolerance) {
printf("MISMATCH VALUES: %f %f\n", M1.elements[i], M2.elements[i]);
    return FALSE;
  } // end if
} // end for
return TRUE;

} // end equalMatrices

//*************************************************
// Sequentially computes matrix multiplication of C = A * B with
// C being returned.
//***************************************************

void seqMatrixMult(const Matrix A, const Matrix B, Matrix C) {
  int i, j, k;
  float CValue;

  for (i=0; i < C.height; i++) {
    for (j=0; j < C.width; j++) {
      CValue = 0.0;
      for (k=0; k < A.width; k++) {
        CValue += A.elements[i*A.width + k] * B.elements[k*B.width + j];
      } /* end for (k */
      C.elements[i*C.width + j] = CValue;
    } /* end for (j */
  } /* end for (i */

} // end seqMatrixMult
Week 14 Discussion Questions

This discussion questions are to design an implementation of the 2D SOR algorithm using CUDA on a GPU. Recall in 2D SOR that on each iteration we replace all interior values by the average of their four nearest neighbors (top, bottom, left, and right on the below diagram).

You can make a simplifying assumption that the array is square with n x n interior elements. However, your code should handle n not matching the dimensions of the grid of threads.

Answering the following questions should help your design.

a) Maximum threads per block is 1024 (2^{10}). If we want to make it 2-dimensional (and square), what would the dimensions of the thread block (DIM by DIM)?

```c
#define DIM_

dim3 dimBlock(_______________, _______________);
dim3 dimGrid(_______________);
```

b) If we want to "tile" blocks across the n x n interior of the array, what is the dimension of the grid of blocks? Complete the assignment statements.

"global thread" x, y calculated by:

```
x =

y =
```

offset is the 1-d index from the beginning of the "2-d matrix":

```
offset =
left =
right =
top =
bottom =
```
void sequential2D_SOR() {
    double average, maxDelta, thisDelta;
    double **temp;
    int i, j;

    do {
        maxDelta = 0.0;
        for (i = 1; i <= n; i++) {
            for (j = 1; j <= n; j++) {
                average = (val[i-1][j] + val[i][j+1] + val[i+1][j] + val[i][j-1])/4;
                thisDelta = fabs(average - val[i][j]);
                if (maxDelta < thisDelta) {
                    maxDelta = thisDelta;
                }
            }
            new[i][j] = average; // store into new array
        }
    } while (maxDelta > threshold); // end do-while
}

Hint on (c) and (d) below: You might consider having the host performing the main 2D SOR loop and the kernel doing a single iteration of the calculation which gets invoked repeatedly by the host. (Include data copies between host and device global memory, synchronization of threads, etc.)

c) Design the host’s algorithm:

d) Design the device’s kernel:
Learning Objectives:
- Apply the CUDA atomicAdd command to perform mutually exclusive update of a shared variable
- Apply CUDA command __syncthreads() to perform a barrier-synchronization among a thread block
- Time CUDA events to evaluate performance of various levels of CUDA memory

To start the lab:
- watch the Lab 14 Video on the eLearning system
- download lab14.zip from the eLearning system to your computer
- upload lab14.zip to student.cs.uni.edu using a secure ftp client (winSCP, FileZilla, scp, etc.)
- log in to XSEDE Single Sign On Hub using Putty at: login.xsede.org using your XUP username and password OR from student.cs.uni.edu using ssh: ssh -l XUPusername login.xsede.org
- Select 1 (one) for Duo Push
- At XUPusername@ssohub ->$ prompt connect to the Bridges supercomputer by: gssish bridges
- Load the Cuda module: module load cuda
- On bridges XSEDE “secure” copy lab13.zip from student.cs.uni.edu to your XSEDE account using scp: (NOTE the ‘.’ at the end of the command is needed and denotes the current directory. You’ll need to supply your student.cs.uni.edu CatID password to complete the copy): scp YOUR_STUDENT.CS.UNI.EDU_USERNAME@student.cs.uni.edu:lab14.zip
- Unzip lab14.zip on XSEDE by: unzip lab14.zip

NOTE: To use CUDA on XSEDE you must first load the CUDA module into your environment by the command: module load cuda

Part A: Using an editor open the file lab14/count3sA.cu which contains a CUDA program that allows the user to enter an integer command-line argument in qsub.count3sA ./count3sA line: the length of the array. It creates a 1-dimensional array of that length (myArray), fills the array with random integers between 0 - 9, and uses the GPU to count the occurrences of 3 in the arrays. The count of 3’s is also calculated sequentially for comparison.

Compile the program using: nvcc -o count3sA count3sA.cu
and run the program with lengths of 100000, 1000000, and 10000000 (i.e., uncommenting the appropriate qsub.count3sA ./count3sA line) by: qsub qsub.count3sA

Complete the timing table:

<table>
<thead>
<tr>
<th>Array Length</th>
<th>Sequential Count of 3’s (in ms)</th>
<th>CUDA Count of 3’s Kernel A (in ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The CUDA kernel A that counts the 3’s is defined as:

```c
__global__ void count3s_kernelA(int * dev_array, int length, int * devCount) {
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 int stride = blockDim.x * gridDim.x;
 while (i < length) {
 if (dev_array[i] == 3) {
 atomicAdd(devCount, 1);
 } // end if
 i = i + stride;
 } // end while
} // end count3s_kernelA
```

Recall the general CUDA architecture and memory layout:
a) Why is sequential vector addition faster for a length of 100,000?

b) As the length gets bigger, why is the CUDA version faster?

c) The `atomicAdd(devCount, 1)` increments the `devCount` variable mutually exclusive across all threads. In what level of CUDA memory (host memory, device global memory, shared memory of a block, local memory of a thread) is `devCount` located?

d) How much contention is there for `devCount` (i.e., which threads are trying to increment it)?

Part B: Using an editor open the file `lab14/count3sB.cu` which contains another CUDA program that counts the occurrences of 3 in the arrays.

Compile the program using: `nvcc -o count3sB count3sB.cu` and run the program with lengths of 100000, 1000000, and 10000000 (i.e., uncommenting the appropriate `qsub.count3sB ./count3sB line by line` by: `qsub qsub.count3sB`

Complete the timing table:

<table>
<thead>
<tr>
<th>Array Length</th>
<th>Sequential Count of 3's (in ms)</th>
<th>CUDA Count of 3's Kernel B (in ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The CUDA kernel B that counts the 3's is defined as:

```c
__global__ void count3s_kernelB(int * dev_array, int length, int * devCount) {
 __shared__ int blockCount;
 if (threadIdx.x == 0) {
 blockCount = 0;
 } // end if
 __syncthreads();

 int i = threadIdx.x + blockIdx.x * blockDim.x;
 int stride = blockDim.x * gridDim.x;

 while (i < length) {
 if (dev_array[i] == 3) {
```
a) The `atomicAdd(&blockCount, 1);` increments the `blockCount` variable mutually exclusive across all threads. In what level of CUDA memory (host memory, device global memory, shared memory of a block, local memory of a thread) is `blockCount` located?

b) How much contention is there for `blockCount` (i.e., which threads are trying to increment it)?

c) The CUDA command `__syncthreads()` performa a barrier-synchronization among all the thread in a block.
Explain the purpose of each `__syncthreads()` in Kernel B.

d) Explain why Kernel B is faster than Kernel A. (NOTE: on XSEDE P100 GPUs, I didn’t see much differences – you can just note that here...)

**Part C:** Using an editor open the file `lab14/count3sC.cu` which contains yet another CUDA program that counts the occurrances of 3 in the arrays.

Compile the program using: `nvcc -o count3sC count3sC.cu` and run the program with lengths of 100000, 1000000, and 10000000 (i.e., uncommenting the appropriate `qsub.count3sC ./count3s line`) by: `qsub qsub.count3sC`

Complete the timing table:

<table>
<thead>
<tr>
<th>Array Length</th>
<th>Sequential Count of 3’s (in ms)</th>
<th>CUDA Count of 3’s Kernel C (in ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The CUDA kernel C that counts the 3’s is defined as:

```c
__global__ void count3s_kernelC(int * dev_array, int length, int * devCount) {
 __shared__ int threadCounts[threadsPerBlock];

 int i = threadIdx.x + blockIdx.x * blockDim.x;
 int stride = blockDim.x * gridDim.x;
 int threadCount = 0;

 while (i < length) {
 if (dev_array[i] == 3) {
 threadCount += 1;
 } // end if
 i = i + stride;
 } // end while

 threadCounts[threadIdx.x] = threadCount;
```
// binary-tree reduction, threadsPerBlock must be a power of 2
i = blockDim.x/2;
while (i != 0) {
    if (threadIdx.x < i) {
        threadCounts[threadIdx.x] += threadCounts[threadIdx.x + i];
    } // end if
    __syncthreads();
    i = i / 2;
} // end while

if (threadIdx.x == 0) {
    atomicAdd(devCount, threadCounts[0]);
} // end if
} // end count3s_kernelC

a) The top while-loop increments the threadCount variable without using an atomicAdd. Why is an atomicAdd not needed here? (Hint: Consider which level of CUDA memory holds threadCount)

b) How much contention is there for threadCount (i.e., which threads are trying to increment it)?

c) Explain the purpose of the __syncthreads() immediately after:
threadCounts[threadIdx.x] = threadCount;

d) Explain the purpose of the __syncthreads() within the while-loop that performs the binary-tree reduction.

e) How much contention is there for devCount (i.e., which/how many threads are trying to increment it)?

f) In summary, explain why Kernel C is faster than Kernel B.
Part D: Using an editor open the file `lab14/count3sD.cu` which contains a partial Kernel D (top "half" of Kernel C). You need to complete this Kernel D by:

- using an `atomicAdd` to update `blockCount` by each thread's `threadCounts`
- using an `atomicAdd` to update `devCount` by each block's `blockCounts`
- using `__syncthreads()` (barrier-synchronization) at needed

a) What is the time of your Kernel D on an array of length 10,000,000?

b) Explain why Kernel D is faster/slower than Kernel C.

Submit `lab14.zip` containing question answers and completed program on the eLearning system.
Comp. Arch.                                     Week 14 Monday Video

(Appendix A Material -- creation of a mutex lock what can be used to update a shared variable in global memory by all threads)

We'll use the CUDA Compare-And-Swap atomic command:

```c
int atomicCAS(int * address, int compare, int val);
```

This atomic operation performs:
1. reads the value pointed at by address
2. compares this value to see if it is equal to the parameter compare. If they are equal, then change the memory pointed at by address to val; otherwise don’t change the value pointed at by the address.
3. returns the initial value read in step (1)

We can summarize the atomicCAS's atomic operation by psuedo-code:
```c
old = *address
if *address == compare then
 *address = val
return old
```

To implement a mutex lock operation, we'll initial a global memory location pointed at by mutex to 0 ("unlocked").

```
mutex
```

```
 |
 |
 0
```

To lock the mutex all threads can perform the code:
```c
while(atomicCAS(mutex, 0, 1) != 0);
```

The first thread to perform the lock will compare the mutex value of 0 to its compare parameter of 0 which will replace the mutex value by 1 with atomicCAS returning 0. Thus, it will drop out of the while-loop.

After the mutex is locked (i.e., has the value 1), other threads performing the atomicCAS will get a return value of 1 and busy-wait inside the while-loop.

We'll use the CUDA "atomic exchange" command when unlocking the mutex. The syntax of this operation is:

```c
int atomicExch(int * address, int val);
```

We can summarize the atomicExch semantics by psuedo-code:
```c
old = *address
*address = val
return old
```

The thread holding the mutex lock can unlock the mutex (i.e. set it back to 0) by performing the code:
```c
atomicExch(mutex, 0);
```

We can create a Lock struct with functions: lock and unlock. The following example uses a Lock struct to complete the summation of a 1D array of floats.
Comp. Arch.

Week 14 Monday Video

/* Programmer: Mark Fienup
 * File: sum1D_Array_Floats.cu
 * Compile As: nvcc -o sum1D sum1D_Array_Floats.cu
 * Run As: ./sum1D
 *
 * Description: A CUDA solution to sum a 1D array of floats.
 * Uses a user-defined Lock structure with lock and unlock functions.
 */

#define SIZE (512*512*32)
#define threadsPerBlock 512

#include <stdlib.h>
#include <stdio.h>
#include <cuda.h>

static void HandleError( cudaError_t err, const char *file, int line ) {
    if (err != cudaSuccess) {
        printf( "%s in %s at line %d\n", cudaGetErrorString( err ), file, line );
        exit( EXIT_FAILURE );
    }
}

#define HANDLE_ERROR( err ) (HandleError( err, __FILE__, __LINE__ ))

struct Lock {
    int *mutex;
    Lock( void ) {
        HANDLE_ERROR( cudaMalloc( (void**)&mutex, sizeof(int) ) );
        HANDLE_ERROR( cudaMemcpy( mutex, 0, sizeof(int) ) );
    }
~Lock( void ) {
    cudaFree( mutex );
}

__device__ void lock( void ) {
    while( atomicCAS( mutex, 0, 1 ) != 0 );
    __threadfence();
}

__device__ void unlock( void ) {
    __threadfence();
    atomicExch( mutex, 0 );
}

__global__ void sum1D_floats(Lock lock, float * dev_array, int length, float * devSum) {
    __shared__ float threadSums[threadsPerBlock];

    int i = threadIdx.x + blockDim.x * blockIdx.x;
    int stride = blockDim.x * gridDim.x;
    float threadSum = 0.0;

    while (i < length) {
        threadSum += dev_array[i];
        i = i + stride;
    } // end while

    threadSums[threadIdx.x] = threadSum;
    __syncthreads();

    // binary-tree reduction, threadsPerBlock must be a power of 2
    i = blockDim.x/2;
while (i != 0) {
    if (threadIdx.x < i) {
        threadSums[threadIdx.x] += threadSums[threadIdx.x + i];
    } // end if
    __syncthreads();
    i = i / 2;
} // end while

if (threadIdx.x == 0) {
    lock.lock(); // wait until lock acquired */
    devSum += threadSums[0];
    lock.unlock(); // release the lock after updating devSum */
} // end if
} // end sum1D,floats

int main(int argc, char* argv[]) {
    float sequentialSum;
    int i, length;
    float * myArray;

    cudaDeviceProp prop;

    // fermi device #2 is Tesla C2070 has 2.0 Compute Capability on fermi
    HANDLE_ERROR(cudaGetDeviceProperties(&prop, 2));
    HANDLE_ERROR(cudaSetDevice(2));

    cudaEvent_t start, stop;
    cudaEventCreate(&start);
    cudaEventCreate(&stop);

    if (argc != 2) {
        printf("Usage: %s <array size>
        exit(-1);
    } // end if

    // Generate data array with 10% 3s
    sscanf(argv[1], "%d", &length);
    printf("array length = %d\n", length);
    myArray = (float *) malloc(length*sizeof(float));
    srand(5);
    for (i=0; i < length; i++) {
        myArray[i] = float(rand() % 10);
    } // end for i

    /* Do the actual work sequentially */
    cudaEventRecord(start, 0);
    sequentialSum = 0;
    for (i=0; i < length; i++) {
        sequentialSum += myArray[i];
    } // end for i
    cudaEventRecord(stop, 0);
    cudaEventSynchronize(stop);
    float elapsedTime;
    cudaEventElapsedTime(&elapsedTime, start, stop);
    printf("Time to count 3s on host: %3.1f ms\n", elapsedTime);
    printf("Array sum sequentially %f\n", sequentialSum);

    // Do the work on GPU
    // allocate memory on the GPU for the data
    cudaEventRecord(start, 0);
    float * dev_array;
    float * dev_sum;
    cudaMalloc((void**)&dev_array, length*sizeof(float));
    cudaMemcpy(dev_array, myArray, sizeof(float)*length, cudaMemcpyHostToDevice);
    cudaMalloc((void**)&dev_sum, sizeof(float));
cudaMemset(dev_sum, 0, sizeof(float));

// Determine device properties
Lock lock;
int blocks = prop.multiProcessorCount;
sum1D_floats<<<blocks*2,threadsPerBlock>>>(lock, dev_array, length, dev_sum);

float devSum;
cudaMemcpy(&devSum, dev_sum, sizeof(float), cudaMemcpyDeviceToHost);

cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);

cudaEventElapsedTime(&elapsedTime, start, stop);
printf("Time to sum array on CUDA device: %3.1f ms\n", elapsedTime);

if (fabs(sequentialSum - devSum) < 0.001) {
    printf("Results match at %f 3s!\n", devSum);
} else {
    printf("Results wrong with seq. sum %f and GPU sum %f.\n", sequentialSum, devSum);
} // end if

cudaEventDestroy(start);
cudaEventDestroy(stop);
cudaFree(dev_sum);
cudaFree(dev_array);

free(myArray);

return 0;
} /* end main */
Comp. Arch.  

Week 14 Friday Video

(Chapter 10 Material -- creation of streams to run parallel tasks on a GPU. We’ll skip chapter 11 on utilizing multiple GPUs -- I think you’ve had enough!)

A CUDA stream represents a FIFO queue of GPU operations:
- kernel launches
- memory copies between host and device memories
- event starts and stops

Think of each stream as a task on the GPU

Streams allow parallel tasks to run simultaneously a GPU. Speedup usually achieved by overlapping:
- kernel computation on the GPU by one stream
- the copying of data between the host-memory and device-memory by another stream

(NOTE: GPU card must support “Concurrent copy and execution” with deviceQuery command. Our Tesla C2070 GPUs support this.)

To utilized “concurrent copy” the data array in the host-memory must be allocated using instead of C’s malloc command. The cudaHostAlloc() function ensures that the memory is page-locked/pinned so the OS cannot swap/page it out to disk. Thus, the GPU can use DMA to copy data to/from the host-memory.

Even without streams, the book’s copy_timed.cu (see attached) program on fermil.cs.uni.edu shows an improvement using arrays that have been allocated using cudaHostAlloc().

<table>
<thead>
<tr>
<th>Direction of the Copy</th>
<th>Copy Bandwidth array allocated using malloc</th>
<th>Copy Bandwidth array allocated using cudaHostAlloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy “up” from host to device memory</td>
<td>4856.9 MB/sec</td>
<td>5012.1 MB/sec</td>
</tr>
<tr>
<td>copy “down” from device to host memory</td>
<td>4170.6 MB/sec</td>
<td>4350.5 MB/sec</td>
</tr>
</tbody>
</table>

The textbook stream example uses two 1D array of (random) floats a and b to calculate 1D array c:

Our previous CUDA approach as a single stream was:
1. whole copy of a to device memory
2. whole copy of b to device memory
3. kernel computation of c
4. whole copy of c to host memory

To achieve parallelism using streams, the copying and computation are partitioned into 20 blocks:

Each stream receives 20 blocks of work. Stream 0 gets the even blocks and stream 1 gets the odd blocks. Two versions of the program are discussed which differ by the order of GPU operations are issued to the streams:
basic_double_streams.cu algorithm:
for (i = 0; i < 20; i = i + 2) do
    copy a\_i to device memory by stream 0
    copy b\_i to device memory by stream 0
    kernel to calculate c\_i by stream 0
    copy c\_i to host memory by stream 0

    copy a\_i+1 to device memory by stream 1
    copy b\_i+1 to device memory by stream 1
    kernel to calculate c\_i+1 by stream 1
    copy c\_i+1 to host memory by stream 1
end for

basic_double_streams\_correct.cu algorithm:
for (i = 0; i < 20; i = i + 2) do
    copy a\_i to device memory by stream 0
    copy a\_i+1 to device memory by stream 1
    copy b\_i to device memory by stream 0
    copy b\_i+1 to device memory by stream 1
    kernel to calculate c\_i by stream 0
    kernel to calculate c\_i+1 by stream 1
    copy c\_i to host memory by stream 0
    copy c\_i+1 to host memory by stream 1
end for

Textbook reported timings on GeForce GTX 285:
- single stream 62 ms
- basic_double_streams.cu 61 ms
- basic_double_streams\_correct.cu 48 ms

Authors explain the results based on the order that stream operations enter to GPU queues to handle:
- Copy Engine queue of pending cudaMemcpyAsync() calls
- Kernel Engine queue of pending kernel calls

Figure 10.2 shows the mapping of basic_double_streams.cu into GPU queues.

Since the cudaMemcpy C of stream 0 is in the Copy Engine queue before the cudaMemcpy A and cudaMemcpy B of stream 1, then the kernel A of stream 1 cannot be run in parallel. Figure 10.3 shows the execution timeline for this example.
Figure 10.4 shows the execution timeline of basic_double_streams.cu into GPU queues. The arrows show the dependencies between the Copy Engine and the Kernel Engine.

The alternative basic_double_streams_correct.cu program produces an execution timeline as shown in Figure 10.5.

Notice the overlap of the memory copies for one stream with the computation of the other stream.

This all seems to make perfect sense, except timing on the Tesla C2070 GPU cards on fermi1.cs.uni.edu are:
- single stream 58 ms
- basic_double_streams.cu 44 ms
- basic_double_streams_correct.cu 53 ms

I'm assuming that "improvements" in the hardware queuing on the Tesla C2070 GPU card was able to find more task level parallelize between the two streams. (This is just a conjecture on my part!)
Code for Thursday's Video

// FILE: copy_timed.cu
#include "book.h"

#define SIZE  (64*1024*1024)

float cuda_malloc_test( int size, bool up ) {
    cudaEvent_t    start, stop;
    int            *a, *dev_a;
    float          elapsedTime;

    HANDLE_ERROR( cudaEventCreate( &start ) );
    HANDLE_ERROR( cudaEventCreate( &stop ) );

    a = (int*)malloc( size * sizeof( *a ) );
    HANDLE_NULL( a );
    HANDLE_ERROR( cudaMalloc( (void**)&dev_a,
                            size * sizeof( *dev_a ) ) );

    HANDLE_ERROR( cudaEventRecord( start, 0 ) );
    for (int i=0; i<100; i++) {
        if (up)
            HANDLE_ERROR( cudaMemcpy( dev_a, a,
                                      size * sizeof( *dev_a ),
                                      cudaMemcpyHostToDevice ) );
        else
            HANDLE_ERROR( cudaMemcpy( a, dev_a,
                                      size * sizeof( *dev_a ),
                                      cudaMemcpyDeviceToHost ) );
    }
    HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
    HANDLE_ERROR( cudaEventSynchronize( stop ) );
    HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,
                                        start, stop ) );

    free( a );
    HANDLE_ERROR( cudaFree( dev_a ) );
    HANDLE_ERROR( cudaEventDestroy( start ) );
    HANDLE_ERROR( cudaEventDestroy( stop ) );

    return elapsedTime;
}

float cuda_host_alloc_test( int size, bool up ) {
    cudaEvent_t    start, stop;
    int            *a, *dev_a;
    float          elapsedTime;

    HANDLE_ERROR( cudaEventCreate( &start ) );
    HANDLE_ERROR( cudaEventCreate( &stop ) );

    HANDLE_ERROR( cudaHostAlloc( (void**)&a,
                                 size * sizeof( *a ),
                                 cudaHostAllocDefault ) );
    HANDLE_ERROR( cudaMalloc( (void**)&dev_a,
                              size * sizeof( *dev_a ) ) );
HANDLE_ERROR( cudaEventRecord( start, 0 ) );
for (int i=0; i<100; i++) {
    if (up)
        HANDLE_ERROR( cudaMemcpy( dev_a, a,
                               size * sizeof( *a ),
                               cudaMemcpyHostToDevice ) );
    else
        HANDLE_ERROR( cudaMemcpy( a, dev_a,
                               size * sizeof( *a ),
                               cudaMemcpyDeviceToHost ) );
}
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop );
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,
                                      start, stop ) );

HANDLE_ERROR( cudaFreeHost( a ) );
HANDLE_ERROR( cudaFree( dev_a ) );
HANDLE_ERROR( cudaEventDestroy( start ) );
HANDLE_ERROR( cudaEventDestroy( stop ) );

return elapsedTime;
}

int main( void ) {
    float 
    elapsedTime;
    float MB = (float)100*SIZE*sizeof(int)/1024/1024;

    // try it with cudaMalloc
    elapsedTime = cuda_malloc_test( SIZE, true );
    printf( "Time using cudaMalloc: %3.1f ms\n",
            elapsedTime );
    printf("\tMB/s during copy up: %3.1f\n",
           MB/(elapsedTime/1000) );

    elapsedTime = cuda_malloc_test( SIZE, false );
    printf( "Time using cudaMalloc: %3.1f ms\n",
            elapsedTime );
    printf("\tMB/s during copy down: %3.1f\n",
           MB/(elapsedTime/1000) );

    // now try it with cudaHostAlloc
    elapsedTime = cuda_host_alloc_test( SIZE, true );
    printf( "Time using cudaHostAlloc: %3.1f ms\n",
            elapsedTime );
    printf( "\tMB/s during copy up: %3.1f\n",
            MB/(elapsedTime/1000) );

    elapsedTime = cuda_host_alloc_test( SIZE, false );
    printf( "Time using cudaHostAlloc: %3.1f ms\n",
            elapsedTime );
    printf( "\tMB/s during copy down: %3.1f\n",
            MB/(elapsedTime/1000) );
}
__global__ void kernel( int *a, int *b, int *c )
{
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    if (idx < N) {
        int idx1 = (idx + 1) % 256;
        int idx2 = (idx + 2) % 256;
        float as = (a[idx] + a[idx1] + a[idx2]) / 3.0f;
        float bs = (b[idx] + b[idx1] + b[idx2]) / 3.0f;
        c[idx] = (as + bs) / 2;
    }
}

int main( void )
{
    cudaDeviceProp  prop;
    int whichDevice;
    HANDLE_ERROR( cudaGetDevice( &whichDevice ) );
    HANDLE_ERROR( cudaGetDeviceProperties( &prop, whichDevice ) );
    if (!prop.deviceOverlap) {
        printf( "Device will not handle overlaps, so no speed up from streams\n" );
        return 0;
    }

cudaEvent_t      start, stop;
float             elapsedTime;

cudaStream_t     stream0, stream1;
int *host_a, *host_b, *host_c;
int *dev_a0, *dev_b0, *dev_c0;
int *dev_a1, *dev_b1, *dev_c1;

// start the timers
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );

// initialize the streams
HANDLE_ERROR( cudaStreamCreate( &stream0 ) );
HANDLE_ERROR( cudaStreamCreate( &stream1 ) );

// allocate the memory on the GPU
HANDLE_ERROR( cudaMalloc( (void**)&dev_a0, N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b0, N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_c0, N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_a1, N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b1, N * sizeof(int) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_c1, N * sizeof(int) ) );
// allocate host locked memory, used to stream
HANDLE_ERROR( cudaHostAlloc( (void**)&host_a,
   FULL_DATA_SIZE * sizeof(int),
   cudaHostAllocDefault ) );

HANDLE_ERROR( cudaHostAlloc( (void**)&host_b,
   FULL_DATA_SIZE * sizeof(int),
   cudaHostAllocDefault ) );

HANDLE_ERROR( cudaHostAlloc( (void**)&host_c,
   FULL_DATA_SIZE * sizeof(int),
   cudaHostAllocDefault ) );

for (int i=0; i<FULL_DATA_SIZE; i++) {
    host_a[i] = rand();
    host_b[i] = rand();
}

HANDLE_ERROR( cudaEventRecord( start, 0 ) );

// now loop over full data, in bite-sized chunks
for (int i=0; i<FULL_DATA_SIZE; i+=N*2) {
    // copy the locked memory to the device, async
    HANDLE_ERROR( cudaMemcpyAsync( dev_a0, host_a+i,
        N * sizeof(int),
        cudaMemcpyHostToDevice,
        stream0 ) );

    HANDLE_ERROR( cudaMemcpyAsync( dev_b0, host_b+i,
        N * sizeof(int),
        cudaMemcpyHostToDevice,
        stream0 ) );

    kernel<<<N/256,256,0,stream0>>>( dev_a0, dev_b0, dev_c0 );

    // copy the data from device to locked memory
    HANDLE_ERROR( cudaMemcpyAsync( host_c+i, dev_c0,
        N * sizeof(int),
        cudaMemcpyDeviceToHost,
        stream0 ) );

    // copy the locked memory to the device, async
    HANDLE_ERROR( cudaMemcpyAsync( dev_a1, host_a+i+N,
        N * sizeof(int),
        cudaMemcpyHostToDevice,
        stream1 ) );

    HANDLE_ERROR( cudaMemcpyAsync( dev_b1, host_b+i+N,
        N * sizeof(int),
        cudaMemcpyHostToDevice,
        stream1 ) );

    kernel<<<N/256,256,0,stream1>>>( dev_a1, dev_b1, dev_c1 );

    // copy the data from device to locked memory
    HANDLE_ERROR( cudaMemcpyAsync( host_c+i+N, dev_c1,
        N * sizeof(int),
        cudaMemcpyDeviceToHost,
        stream1 ) );

}

HANDLE_ERROR( cudaStreamSynchronize( stream0 ) );
HANDLE_ERROR( cudaStreamSynchronize( stream1 ) );

HANDLE_ERROR( cudaEventRecord( stop, 0 ) );

HANDLE_ERROR( cudaEventSynchronize( stop ) );
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime, start, stop ) );
printf( "Time taken: %3.1f ms\n", elapsedTime );

// cleanup the streams and memory
HANDLE_ERROR( cudaFreeHost( host_a ) );
HANDLE_ERROR( cudaFreeHost( host_b ) );
HANDLE_ERROR( cudaFreeHost( host_c ) );
HANDLE_ERROR( cudaFree( dev_a0 ) );
HANDLE_ERROR( cudaFree( dev_b0 ) );
HANDLE_ERROR( cudaFree( dev_c0 ) );
HANDLE_ERROR( cudaFree( dev_a1 ) );
HANDLE_ERROR( cudaFree( dev_b1 ) );
HANDLE_ERROR( cudaFree( dev_c1 ) );
HANDLE_ERROR( cudaStreamDestroy( stream0 ) );
HANDLE_ERROR( cudaStreamDestroy( stream1 ) );

return 0;
}
Week 15 Discussion Questions

1. For a very large parallel problem how might we combine these parallel computing paradigms (MPI, pthreads, CUDA)?

Recall the n-body problem from Chapter 6 where we calculate the movement of n-bodies (e.g., n objects/planets in space, or n particles in a container) over time. To be concrete, the book considers the motion of planets or stars in a 2D space.

Serial code:

```plaintext
Get input data;
for each timestep {
 if (timestep output) Print positions and velocities of particles;
 for each particle q
 Compute total force on q;
 for each particle q
 Compute position and velocity of q;
 } Print positions and velocities of particles;
```

The for each particle q:

```
Computer total force on q
```

code needs to perform individual force calculations:

Nodes:
- row 0 are the forces on particle 0 by other particles, etc.
- matrix is "symmetric", except opposite forces are negated
  (two versions: basic and reduced utilizing symmetry)

$$
\begin{pmatrix}
0 & f_{01} & f_{02} & \cdots & f_{0,n-1} \\
-f_{01} & 0 & f_{12} & \cdots & f_{1,n-1} \\
-f_{02} & -f_{12} & 0 & \cdots & f_{2,n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-f_{0,n-1} & -f_{1,n-1} & -f_{2,n-1} & \cdots & 0
\end{pmatrix}
$$

2. Consider how we might begin to parallelize the n-body problem using CUDA on the GPU by answering the following questions:

   a) Where (i.e., in what type of CUDA memory) should we store the particle masses?

   b) Where (i.e., in what type of CUDA memory) should we store the particle positions and velocities?

   c) How would you allocate the computation of individual force calculations (e.g., \( f_{01}, f_{02}, \text{etc.} \)) to CUDA threads?

   d) How would you compute the total force on an individual particle \( q \)?

   e) How would you allocate the computation of updating particle positions and velocities to CUDA threads?

   f) How would you synchronize the outer-loop to complete a time-step before starting the next?
Week 15 Discussion Questions

I've thought some about implementing TSP on GPU. In fact I presented a poster paper at PDPTA'13 (International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, NV, July 22-25, 2013) (Partially paper below)

Abstract: Depth-first search (DFS) tree searching algorithms are a common implementation approach for many NP-complete optimization algorithms (travelling salesperson problem (TSP), 0-1 Knapsack problem, etc.). In a GPU environment the host computer typically performs a breadth-first expansion of the top of the search tree to determine subtrees that can be assigned to GPU threads, then these subtrees are transferred from the host memory to the GPU-device global memory before the GPU threads can start their search. This paper describes a parallel algorithm that allows the GPU threads to determine their initial subtrees.

Background: Depth-first search (DFS) tree searching algorithms are a common implementation approach for many NP-complete optimization algorithms [2]. Consider the travelling salesperson problem (TSP) for the below graph, where a salesperson starting at her hometown (say \(v_1\)) wants to visit every other city exactly once before return to her hometown (called a tour) using a minimum total cost. For this toy example, the minimum tour is \([v_1, v_2, v_3, v_4, v_5, v_1]\) with a total cost of 21.

```
Parallelization Algorithm
```

In a GPU environment the host computer typically performs a breadth-first expansion of the top of the search tree to determine subtrees that can be assigned to GPU threads, then these subtrees are transferred from the host memory to the GPU-device global memory before the GPU threads can start their search on the subtrees.

The following parallel algorithm allows the \(t \times 2^n\) (a power of 2) GPU threads to determine their initial subtrees. Consider a search tree with a branching factor of \(n\) at each level, we can visualize the total work of the search tree using two arrays Start and End as in (a) below. To split the work into two halves, half of level \(1\)'s values can be split off as in (b) by thread 0.

```
// binary-tree scatter of work, threadsPerBlock must be a power of 2
1 = blockDim.x;
while (1 > 1) |
 if (threadIdx.x % 1 -- 0] |
 if (level = 2; level < n; level++) |
 if (Start[threadIdx.x][level-2] -- End[threadIdx.x][level-2] || included) |
 Start[threadIdx.x][level-2] = Start[threadIdx.x][level-2];
 End[threadIdx.x][level-2] = End[threadIdx.x][level-2];
 else |
 mid = (Start[threadIdx.x][level-2] + End[threadIdx.x][level-2]) / 2;
 Start[threadIdx.x][level-2] = mid+1;
 End[threadIdx.x][level-2] = End[threadIdx.x][level-2];
 End[threadIdx.x][level-2] = mid;
 // end if
 // end if
 // end if
 // end for
 // end while
```

Each of the two halves can be split in parallel by two threads (0 and \(t/2\)) into four quarters with level values in the ranges: \(1, (n/4), (n/4)+1, (n/2), (n/2)+1, (3n/2), (3n/2)+1, n\). When a thread's Start value at level \(i\) equals its End value at level \(i\)'s, it splits its work by splitting its level \(i+1\) values in half. Four threads can split the four quarters of work into eights, etc.

This binary-tree scattering of work among the threads would look like the following in CUDA pseudocode:
Week 15 Discussion Questions

Some NP-complete problems search for optimal subsets of items from a set of size n (e.g., 0-1 Knapsack problem, subset-sum problem, etc.). In these cases the above binary-tree scattering of work is not even needed since each of the the \( t \) (a power of \( 2 = 2^k \)) GPU thread Id's if though of as k-bit binary numbers represent the starting subtrees level k in the search tree. Consider the small example of \( t = 8 = 2^3 \) with binary thread Ids: 000, 001, 010, 011, 100, 101, 110, 111.

After a thread is assigned an initial subtree (regardless of the type of search tree), its initial state and feasibility must be evaluated if a promising function is being used to prune branches of the search tree.

2. Answer the following questions about my above paper.

a) Why is it bad to had the host computer performs a breadth-first expansion of the top of the search tree to determine which subtrees can be assigned to GPU threads? (i.e., why is it better if we can parallelize the assignment of subtrees to GPU threads?)

b) My TSP approach for the GPU as present has a serious flaw. What is it?

c) My approach for NP-complete problems that search for optimal subsets of items has the same problem, but it can be “salvaged” by a relatively simple modification. What is the modification?