
1. In the sum-of-subsets problem you are given as input:
� a set of n positive integers (weights) {w1, w2, w3, ... , wn}, and
� a target sum, W

with the task of finding all subsets that sum to the target sum, W.

Consider an instance of the sum-of-subsets problem: For the weights of { 5, 6, 10, 11, 16 }, find all the subsets
adding to 21.

To solve a problem using backtracking, you need to answer the following questions:
a) What should the state-space tree look like? (i.e.,What would the "for each child c" loop iterate over?)

b) What state information is needed at each node?

c) Any alternate state-space tree which might be better for exploring subsets?

d) Without some pruning criteria (check for "promising" child node), how many nodes are in both of the above
state-space trees?

Algorithms Lecture 14 Name:_________________

Lecture 14 Page 1

Starting Node
Global Problem-Instance Information

 - original call to start recursive backtracking function

 5 6 10 11 16weights:

n: W: 5 21

 1 2 3 4 5

e) What criteria can be used to determine if a child node (c) is NOT promising?

f) What information is needed by our promising function?

2. Consider customizing the Backtrack template for the sum-of-subsets problem. Use a single, “global”,
current-node state which is updated before we go down to the child (via a recursive call) and undone when we
backtrack to the parent.

Backtrack(recursionTreeNode p) {

 treeNode c;
 for each child c of p do # each c represents a possible choice

if promising(c) then # c is "promising" if it could lead to a better solution
if c is a solution that's better than best then # check if this is the best solution found so far

best = c # remember the best solution
else

Backtrack(c) # follow a branch down the tree
end if

end if
 end for
} // end Backtrack

Algorithms Lecture 14 Name:_________________

Lecture 14 Page 2

3. In the 0-1 Knapsack problem:

A thief breaks into a jewelry store carrying a knapsack that will break if its weight limit (W) is exceeded. The
thief wants to maximize the total value in the knapsack without exceeding its weight limit W.

Consider the following 0-1 Knapsack problem with four items and a knapsack weight limit of W=10 oz.

$4/oz.$123 oz.4

$5/oz.$255 oz.3

$9/oz.$637 oz.2

$10/oz.$404 oz.1

Profit/WeightProfit , piWeight, wiItem, i

To solve a problem using backtracking, you need to answer the following questions:
a) What should the state-space tree look like? (i.e.,What would the "for each child c" loop iterate over?)
 (Hint: consider alternate state-space tree which might be better for exploring subsets)

b) What state information is needed at each node?

Algorithms Lecture 14 Name:_________________

Lecture 14 Page 3

Starting Node

Global Problem-Instance Information

 - original call to start recursive backtracking 4

 40

 7

 63

 5

 25

 3

 12

(weights) w:

(profits) p:

n: W: 4 10

 1 2 3 4

 1 2 3 4

c) What criteria can be used to determine if a parent node (p) is NOT promising?

d) What information is needed by our promising function?

e) Since any subset is potentially the best solution, consider customizing the backtracking optimization template
"checknode" (p. 228) for the 0-1 Knapsack problem. Use a single, “global”, current-node state which is updated
before we go down to the child (via a recursive call) and undone when we backtrack to the parent.

checknode(treeNode p) {

 treeNode c;
 if p is better than best solution

best = p # remember as the best solution
 end if
 if promising(p) then # p is "promising" if it could lead to a better solution
 for each child c of p do # each c represents a possible choice

 checknode(c) # follow a branch down the tree
 end for
 end if
} // end checknode

Algorithms Lecture 14 Name:_________________

Lecture 14 Page 4

